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ABSTRACT

This publication provides the algorithmic definitions, performance characteri-

zations and application notes for a high-performance adaptive noiseless coding

module. Subsets of these algorithms are currently under development in custom VLSI

at three NASA centers. This report extends the generality of coding algorithms recently

reported.

The module incorporates a powerful adaptive noiseless coder for Standard

Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-

negative integers, where smaller integers are more likely than the larger ones).

Coders can be specified to provide performance close to the data entropy over any

desired Dynamic Range (of entropy) above 0.75 bit/sample. This is accomplished by

adaptively choosing the best of many efficient variable-length coding options to use on

each short block of data (e.g., 16 samples). All code options used for entropies above

1.5 bits/sample are "Huffman Equivalent," but they require no table Iookups to

implement.

The coding can be performed directly on data that have been preprocessed to

exhibit the characteristics of a Standard Source. Alternatively, a built-in predictive

preprocessor canbe used where applicable. This built-in preprocessor includes the

familiar one-dimensional predictor followed by a function that maps the prediction

error sequences into the desired standard form. Additionally, an external prediction

can be substituted if desired.

This report further addresses a broad range of issues dealing with the interface

between the coding module described here and the data systems it might serve.

These issues include: multidimensional prediction, archival access, sensor noise, rate

control, code rate improvements outside the module, and the Optimality of certain

internal code options.
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SOME PRACTICAL UNIVERSAL NOISELESS

CODING TECHNIQUES, PART III, MODULE PSI14,K+

I. INTRODUCTION

References 1-5 provide the development and analysis of some practical

adaptive techniques for efficient noiseless (Iossless) coding of a broad class of data

sources. Specifically, algorithms were developed for efficiently coding discrete

memoryless sources that have known symbol probability ordering but unknown

probability values. General applicability of these algorithms is obtained because most

real data sources can be simply transformed into this form by appropriate reversible

preprocessing.

The applicability of noiseless coding to several high data rate NASA

instruments has recently fostered the definition of a specific noiseless coding "module"

called PSI14,K+ [6]. Extensions and modification of key adaptive coding algorithms

from that earlier work are incorporated in this module, along with a standard

preprocessor (denoted by the "+"). This PSI14,K+ definition evolved in an attempt to

minimize hardware requirements without incurring a loss in performance. Two very

similar subsets of the module have been implemented as CMOS VLSI chip sets by the

Jet Propulsion Laboratory (JPL) and Goddard Spaceflight Center (GSFC) in

collaboration with the University of Idaho's Microelectronics Center. The algorithmic

definitions that specifically focus on these implementations are provided in Ref. 7 and

are discussed here also.

The GSFC/U. of Idaho implementations include full custom 1.0-_m CMOS

coder and decoder chips [8]. Bothtypes of chip were recently tested successfully

under laboratory conditions at input data rates up to 700 Mbits/s. By operating on

sampled data quantized from 4 to 14 bits/sample, efficient coding performance can be

expected over a range of entropies from 1.5 to 12.5 bits/sample.

JPL developed and recently tested 1.6-_m CMOS coder chips based on both

gate-array and standard cell technologies [9]. These chips, while essentially

implementing the same subset of PSI14,K+ algorithms, have thus far included fewer

general-purpose features than the corresponding GSFC/U. of Idaho coder chip. The



Comet Rendezvous/Asteroid Flyby (CRAF)/Cassini project has recently initiated efforts

to flight qualify an upgraded version of the gate-array design.

The primary purpose of this report is to present the functional, algorithmic and

performance characteristics embodied in the most general PSI14,K+ module

definition. Appropriate material from earlier references will be consolidated here in

support of that presentation.

The first chapter provides the motivation and technical framework for a

PSI14,K+ module specification. This includes basic notational quirks used throughout,

performance goals and a key partitioning of the coding process into separate pre-

processing and adaptive variable-length coding steps.

Chapters il and Iii focus individually on the specific PSI14,K+ module

requirements for preprocessing and adaptive variable-length coding, respectively.

Finally, Chapter IV addresses a broad range of issues dealing with the interface

between a PS114,K+ module and the data systems it might serve, including"

Multidimensional prediction.

Archival access.

Sensor noise.

Rate control.

Code rate improvements outside the module.

Optimality of certain internal code options.

BACKGROUND, REVIEW AND ORIENTATION

The general form of a noiseless coding module is, from Refs. 3-7, given in Fig.

1. We will use it to reintroduce notation and focus on the goals of this report.

2
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Fig. 1. General Coding Module

As shown, the coding process consists of two steps:

1) Reversible preprocessing of a block of data samples ,X into another data

block _n that has certain standard characteristics, and

2) Using adaptive variable-length coding to efficiently represent the

standard source _n block produced by Step 1.

Ultimately we will provide the definitions and performance characteristics that

convert this general-purpose coding module into PSI14,K+, which includes the subset

described in Ref. 7.
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Notation

In the figure, the overall coding process is specified by the "code operator"

vb[l (1)

That is, _b[.] operates on X (and possibly a priori or side information) to produce the

coded sequence _b[_]. This form of notation (subscripting and superscripting the

Greek letter _) was introduced in Ref. 3, and we will add to the list here. However, for

space and convenience we will often call out a particular _b[.] by the English form

PSlab. For example, _/14,K['] would become PSI14,K and

V14,K[X ] = PSI14,K[X]

The reversibility of these operators requires that: Given PSlab[X] and any a

priori or side information used in the coding process, the original data block X can be

recovered precisely.

Sequences vs. Samples. Where appropriate, we will emphasize that a

quantity is a "sequence" of bits or samples by placing a tilde (~) over that quantity.

Concatenation. If _, and B are two sequences of samples, then we can form a

new sequence C by running them back-to-back as

C_,= _,- B (2)

and using the asterisk to indicate concatenation. However, the asterisk will be omitted

occasionally when no confusion should result.

Length of a Sequence. The function ,_ (.) will be used to specify the length

of a sequence. For example, if _, is a binary sequence, then

,,_ (_,) (3)

4



denotes its length in bits. Without any anticipated confusion, if _, is nonbinary, we take

,,_(_,) as either the length of _, in samples or the length of a standard fixed-length

binary representation for _, in bits, whichever is more useful in context.

Estimated length. To indicate an "estimate" of the length of some sequence,

we will use 3'(-),appropriately subscripted and superscripted. For example, we have

Yab(X)= ,_ (eSlab[_) (4)

as an estimate of the length of coded sequence PSlab[_.

Standard Source _n

We can better understand the function of both preprocessor and coder by

understanding the idealized Standard Source for the sequences

described as follows:

1)

2)

3)

4)

_n:81 _52... 8j (5)

The J samples of _'n are values from the set of the nonnegative integers

0, 1,2 .... q-1 (6)

The samples of _n have the probability distribution

P5 = {P0, Pl, • • • Pq-1} (7)

The {Pi} exhibit the ordering

P0 -> Pl > P2 >. • • ->Pq-1 (8)

as illustrated in Fig. 2, and

The samples of _n are independent (uncorrelated) with

themselves and any "available" a priori or side information. (9)

5
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While idealized, these conditions can easily be well approximated for many

practical problems. In any case, it is the preprocessor's task to achieve and maintain

these conditions as closely as possible. Let's look at the consequence for the second

step in Fig. 1 (coding).

By (6), the coder always has to deal with the same alphabet (with the exception

of its size, q), regardless of the originating source.

When using any specific variable-length code, a maximum reduction in rate is

obtained by using the shortest code words for the most frequently occurring symbols

and the longer code words for the less likely symbols. Then by (8), the assignment of

code words to a preprocessed (_n sequence should always be to assign the shortest

code words to the smallest integers. Under condition (8), this is the best

assignment for any P5 (meeting (8)) and any variable-length code. However, this does

not say anything about whether a particular code is the best one to use.



The condition in (9) means that the burden of making the most from data

correlation and a priori knowledge is placed on the preprocessor. If correlation still

exists in _n, then the preprocessor can probably be improved, which yields _n

distributions with more frequent occurrence of the smaller integers.

Coder Performance

The entropy of a particular distribution P6 is given by

H(P6) = H 6 =- _, pj log 2 pj bits/sample (10)
I

If P6 is unchanging, then H 6 is a bound to the best performance of any coding

algorithm which follows. Assuming that preprocessing condition (9) has been met, H 6

is also a bound to overall performance of a coding module. For a given P6, the

best single variable-length code can be derived from the Huffman algorithm [10].

Unfortunately, the real world hardly ever provides P6 which do not change.

In practice, the idealized preprocessing conditions in (6)-(9) can usually be

well approximated and maintained, but they change over time (see for example, Fig.

2). Consequently, the real practical problem facing the coder of preprocessed _n is to

maintain efficient performance as P6 changes. That is, usually the full burden of

adapting to nonstationary data characteristics can be placed on the coder.

We say that that a coder is efficient if it obtains performance

"close to" an average measured entropy, R 6, which will vary as P6

does. (11)

To bound performance in the classic sense, R 6 must be measured over a span

that is both long enough to be statistically significant and short enough to catch the

real statistical variations. The real world is full of compromises, SO R 6 should generally

be viewed as a guide to good performance rather than a bound.

The term "close to" leaves some room for interpretation, which usually means

within 0.2 to 0.3 bit/sample. Thus, one efficient coder might be "more" efficient than

7



another under certain conditions. At very low entropies, which are not of concern to us
here, being within 0.2 bit/sampleof R5 could not be considered efficient.

Dynamic Range. We will often be interested in the range of entropies over
which a particular coder can be viewed as efficient in the sense just described. This is
called a coder's Dynamic Range (of efficientperformance). _

Application Specific Goals. The performance goal for the variable-length
coder is summarizedgraphically in Fig. 3.

¢
U

Zg-

CODER i /
I)YHAMZC -_ /

RAH_E _/I/_

/_t/z/'/DON'T

! CARE

-" "" ./,/'/ - . It

"" /" I ! EXPECTED ! r
I SOURCE '

," J"_ EHTROPY /'_ _
// I RANGE I

J i t ! i

Entropy, H&, bi s/sampte

Fig. 3. Desired Average Coder Performance

for a Specific Application

Graphically, the figure says that a coder's Dynamic Range should fall within the

application's expected range of entropies.

The "Don't Care" regions simply indicate that entropies outside the application's

range are unexpected, and so concern for good performance in these areas is not

critical. However, real-world problems often produce transient situations which don't fit

8



the norm. It is a good idea to build in some additional robustness (larger Dynamic

Range)to deal with such transients.

GETTING MORE SPECIFIC

Figure 4 replaces the general coding module of Fig. 1 with the next level of

detail. We can begin to unveil module PSI14,K+.

I-

I

'It,,, I

X = xl x2,.xj I
J' I /

n-hi+ I
S=mples I

I

I

PSII4,K+

IBuil÷-inl

REVERSIBLE

PREPROCE_0R

PSII4,K

Coder

K

-I

I

I ~

• lPSZ14,K+[X]

PSZI4,K[g ]

.." " I I
I

- L. ......... !

' I' 'I x_ ' j l _>.

Fig. 4. Module PSI14,K+ High-Level

Functional Block Diagram

A specific predictive preprocessor that probably offers the broadest applicability

to real problems will be discussed in Chapter II. The specific adaptive variable-length

coder PSI14,K will be treated in Chapter III. But certain parameters and desirable

features can best be introduced here without the additional detail.

Input

The input ,X on the left of Fig. 4 is a J-sample data block containing n-bit

samples. The built-in preprocessor will convert ,X into the standard form _n, which is

also a J-sample sequence of n-bit samples. As already noted, _n generated in this

way will satisfy or closely approximate the desired standard preprocessing conditions

[6].

9



To Preprocess or Not To Preprocess

For those situations where the use of an external preprocessor is desirable,

data can be entered directly into the coder, as shown. This option is functionally

indicated in Fig. 4 by a logic signal "El °' controlling a switch. The inclusion of this

feature considerably broadens the module's applicability.

Parameter Ranges

A discussion of parameter K, shown as externally controlling the coder PSI14,K

in Fig. 4 will be provided in Chapter ii1. It suffices to note here that incrementing K by 1

will shift the Dynamic Range upward by 1 bit/sample. The number of K options

included in a particular implementation depends on the goals and constraints of that

implementation. Additional means for externally shifting the Dynamic Range will be

discussed in Chapters III and IV.

Input Bits/Sample, n. There are numerous examples of real applications

which could make use of the algorithms embodied in the PSI14,K+ coding module.

The number of bits of data quantization for these examples lies in the range of

2 < n < 16 (12)

with current project driven interest on n = 8, 12 and I4.

Block Size, J. Similarly, there are good reasons to consider block sizes over

the range

1 <J < 16 (13)

although the vast majority of applications could do just fine with a fixed J = 16.

Estimate. it is valuable to have a count of either the actual number of bits to

code an individual data block or an estimate, as in (4). Thus, Fig. 4 includes

+

Y14,K (X)

10



as a desirable output of the PSI14,K+ module. Such estimates can be used to guide
decisions that are external to the module.

A

Other. Logic signal E2 and data signal x i are shown for completeness. They

are discussed in the next chapter.

11
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II. BUILT-IN PREPROCESSOR

A functional block diagram of the built-in PSI14,K+ Module preprocessor is

shown in Fig. 5. It is derived directly from the imaging preprocessor in Ref. 5.

I

~ I

X = ×1x2"xJ 1

HODULE PREPROCESSOR

Predic÷ion Error

A= 4| _2..._j

SRHPLE

DELRY

HRP

Pr

I

I

m_"= _8z.8 _
>

....... 7
J n "

x_ E2/E2
EXTERHRL

Fig. 5 Built-in Preprocessor Functional Block Diagram

Predictor

The first part of this preprocessor is a very simple predictor consisting of a

single sample delay element. With x i as the ith sample in an input block X, this delay

element "predicts" that x i equals the previous sample:

A

x i = xi_ 1 (14)

Such a predictor is broadly used as a one-dimensional (l-D) predictor. For

many problems, no other predictor need be considered. However, the switch

13
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controlled by logic signal "E2" provides a means for using an arbitrary external

prediction, when desirable or necessary. The switch also serves the dual purpose of

providing the first prediction of a data block when the internal sample delay has not

been initialized (e.g., for the first sample of an image line).

An example of an external two-dimensional (2-D) predictor interfacing with the

module's preprocessor is illustrated in Fig. 6. The current sample shown is the mth

sample of the ith line of a raster image - xi, m. An external predictor predicts that the

value of xi, m will lie halfway between the sample above xi_ 1,m and the previous

sample in the same line, Xi,m_ 1.

e%/

X

MODULE PREPROCESSOR
i ..w m m .... m. ! ul i,.l. m .m ,_, JW. m _ all _ m .,m m m m .l.. ==1

> SAMPLE

' i-!\ / _ "--t j

ul

.1

m-[m _ I
Xi,m .t. A

MRP

(Internal)
SRHPLE
DELRY 1

8
>

Fig. 6. External 2-D Predictor Interfacing With Module Preprocessor
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Error Signal

The difference between any sample and its prediction produces the error signal

6i = xi - _i (15)

Sequences of A i tend to display the unimodal distribution in Fig. 5 so that the condition

Pr[A i = 0] > Pr[A i =-1] > Pr[6 i = +1] > Pr[A i =-2] >_... (16)

is consistently well approximated. 1

By using all available a priori and side information, the best predictor would

produce an uncorrelated sequence of Ai with generally the smallest errors (so that the

error distribution is more peaked around zero). Ultimately this would produce the

lowest code rate. The module's external predictor option allows one to develop and

use such a predictor if desired. However, the simple built-in delay predictor may come

very close for many problems.

A rule of thumb for imaging data is that a 2-D predictor, such as in Fig. 6, may

provide as much as 0.5 bit/sample net improvement in code rate over the simple delay

predictor. In general, the benefits of improved code rate must be weighed against the

implications of added complexity for each individual compression system

implementation.

1Note that reversing the position of positive and negative differences in (16) is just as

good an assumption. From a hardware-implementation point of view, there is a slight

advantage to the arrangement in (16) [8]. Except where noted otherwise, the ordering

of differences as in (16) will be assumed.
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Mapping into the Integers

The final preprocessor step is to map the prediction errors, {Ai}, into the non-

negative integers so that the probability-ordering condition in (8) is well approximated.

This is accomplished for the conditions in (16) by the basic mapping operation in

Table 1 and Eq. 17.

Table 1. Basic Mapping of Ai into the Integers, 5 i

Prediction
Error, &L

0
II

+1
-2

+2
13

1

0

1
2
3

4
$

(21Ail

( 2A i

1 if A i < 0

if A i > 0

(17)

But condition (16) cannot be true for all A i when the signal values are close to
^

the boundaries of the signal dynamic range. For example, if x i = xi-1 = 0, the error Ai =

x i - 0 = x i > 0, so that negative errors cannot occur. Then for the mapping in (17)

Pr[5 i = odd number > 0] = 0
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and so condition (8) can't be true either. Reference5 provides an alternative mapping
that takes advantage of these signal dynamic range constraints to avoid this problem.
This mapping can be rewritten here for the ordering in (16) as

J//-+(xi,_i) = 8i =

2A i 0 _<Ai_< 0

21All- 1 -8 _<Ai < 0

e + IAil Otherwise

(18)

where for n-bit quantized samples

O(_i) = min (_i, 2n-1 - _i) (19)

For our example where _i = 0, if a Ai = +6 occurred, Eq. 18 would produce a _i = 6,

whereas Eq. 17 would produce a 5i = 2(6) = 12. Appendix A provides additional

information on the alternative mapping functions.

Performance Advantage. The performance benefit of using (18) and (19)

instead of (17) is application dependent. Several tests on 8-bit imaging data showed

typical improvements from 0.01 to 0.03 bit/sample.

Quantization Advantage. But this mapping has an additional advantage.

Whereas n-bit data will produce n+l bit prediction errors, 5 i is constrained by (18) and

(19) to only n bits. That is

0 < 6i< 2n-1 (20)

Data Line Advantage. Yet another advantage appears. Note that if an

external prediction value _i in Fig. 5 is fixed at zero, that is

^

xi = 0 for all i

and so

Ai = x i

17



Then by (18) and (19)

0=0

qSi= IAil= xi

That is, referring again to Fig. 5, any input x i is passed directly through the

preprocessor, unchanged. This accomplishes the function of the Fig. 4 data line

controlled by logic signal El/El. The data line can be omitted.

18



III. ADAPTIVE VARIABLE-LENGTH CODING

The general-purpose adaptive coder was designated as PSI11 in Ref. 3. Its

functional form is given in Fig. 7.

P$111

ID(id)

BIHRRY
COHVERSIOH

ID('} _-

Fig. 7. General-Purpose Adaptive Coder, PSI11

The input to PSI11 is a J-sample preprocessed data block _n having the

desired characteristics described in (5)-(9).

The output of PSI11 takes the form

_11 [_n ] : ID(id) • _eqd[_ n ] (21)

where id takes on the nonnegative integer values

0<id<N-1 (22)
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and

ID(id) (23)

is a binary string designation for id.

N is the number of code options available for coding data block _n. The

(subscript and/or superscript) designation for the ith coder is oq_1. For example, if a
coder named"PSI1,5" is the third coder in a list of coder options, then (z2 -- 1,5.

Decision operations, discussed later, determine which coder is best to use and

designate this choice with decision or "identifier" number, id. This directs the PSI11

adaptive coder to output the coded sequence

-_Oqd[_n ] (24)

prefaced with a binary code for the identifier, ID(id), to tell a decoder which type of

coded sequence follows.

Unless noted otherwise, we will assume that the identifier code, ID, is an m-bit

fixed-length code with 2

m = Llog2NJ (25)

Typically N is chosen so that N = 2 m.

Note that we have modified the notation slightly from Refs. 3-5 to clarify the

distinctions among a coder's decision, its binary representation, and the

corresponding coder option designations.

2LxJ is the smallest integer greater than or equal to x.
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Also shown in the figure is an estimate of the coded length of any internal code

option i. By (4)

To_i(gn) = ,,_ (_o_i[gn ])

and therefore, an estimate for PSI11 itself is

,,_ 04/11[ _n ]) = Y11(_n) = ,,_ (Ig(id)) + ye_id(Sn ) (26)

and where typically ,,_ (ID(id)) = m from (25).

PSI14

We now define the individual coder options that convert the general form PSI11

into PSI14.

Fundamental Sequence, PSI1

Define the code word fs[i] by

fs[i] = 0 0 0 .... 0 0 0 1 (27)

i zeroes

where i > 0 is an input integer. The length of "code word" fs[i] is

Again, let

-ei = ,_ (fs[i]) = i + 1 bits

_n--81 82... 8,.i

(28)

be an input sequence of samples meeting the preprocessing conditions described

earlier. Then, the coding of _n by using fs[.] on each sample yields the "Fundamental

Sequence" of _n
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PSI118n ] =_115n]= fs[51]* fs[52]*.., fs[Sj] (29)

That is, PSI1 denotes the applicationof the "fs" code in (27) to all the samples of

a sequence.The length of a Fundamental Sequence is

J

FO=_,1=,,_(PSII[_n])=J + _ 5j
j=l

(3O)

Note that the code defined in (27) is probably the simplest nontrivial variable-

length code there is. It is defined for all input alphabet sizes by the simple expression
in (27). This simplicity carries into both software and hardware implementations.3

Example. Let

_n = 51 52... 514

=00000400490010 (31)

By applying the rules in (27) and (29), we get

_1[_n]=1111 1000011 10000100000000011 1011 (32)

and from (30), or by counting,

F0 = 14 + (4 + 4 + 9 + 1) = 32 bits (33)

3Clearly, if q = max i, then (27) and (28) can be replaced by

fs[q] = 0 0 0,.. 0 0 0 and ._q = q bits

q zeroes

We refer to this refinement in the fs code definition as the "Optimized FS Code."

However, except for very small alphabets, the added performance benefits can be

expected to be insignificant [11]. Thus, except where noted otherwise, we will

presume the simpler definition in (27) and (28).

22



Performance. The average performance for PSI1, based on measured results

from numerousdata sources, is plotted in Fig. 8 as a function of entropy H5 (Eq. 10).

/ //
EFFICIEHT \ / /

2.0 3.0 4.0 5.0

HS, bi_s/sampie

= /

,,=,,0i.o_/j
°-0. 0

0.0 1.0
ENTROPY

Fig. 8. Average PSI1 Performance

Performance close to the entropy should not be a surprise since the fs[ • ] code

in (27) is clearly a Huffman code for some distribution. (The latter subject is later

investigated in conjunction with other coding operations in Ref. 11). The Dynamic

Range for this code is the entropy region of approximately 1.5 _<H 8 < 2.5 bits/sample.

Such a narrow range is typical for individual variable-length codes.
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Code Operator PSIO

From (29) and (30),

FS = _118 n] = 41 _2-.. _F0 (34)

denotes a Fundamental Sequence of length F0 bits, where now _i denotes the ith bit.

Complement. The complement of F_S is given as

COMe[ F_S]= F=S= _'1 _'2..- _F 0 (35)

where _'i is the complement (2 n - 1 - _i) of the ith sample of F'S.

Third Extension. The third Extension of FS is given as

Ext3[ F=S]= (_'1 _'2 _3)* ( _4 _5 _6)*..- (_F 0 0 O) (36)

where the samples of FS have been grouped into binary 3-tuples (the last 3-tuple is

completed by adding dummy zeroes, as necessary). Thus, we have

a = ,_ (Ext3[F_S]) = 3-tuples (37)

and

b = _ (Ext3[F=S])= 3 L-_J = 3a bits (38)

We are interested in Ext3[F_S] as a source of binary 3-tuples, so we write

i

Ext3[ F_S]= 131* I]2 *... 13a (39)

where _i are the individual 3-tuples that make up (36).
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Coding Ext3[FS]. Code operator PSI0 is defined as the coding Ext3[F_S] in

(39) by the variable-length code in Table 2. 4

Table 2. 8-Word 3-Tuple Code, cfs[i]

3-'tupte

000

O01

010

CODE WORD

cfs[ PL:!

001

010

100 011

011 00000

101 00001

110 O0010

111 00011

for

Applying this code to the 3-tuples of Ext3[F_S] provides the result we are looking

• o[Sn] = cfs[131] * cfs[132] *... cfs[_a] (40)

Estimate. It can be shown that a bound and good estimate to _ (PSl0[Sn]) is

70(8 n) = F0_- +2(F0-d)_>,_(_0[sn]) (41)

4This particular code is slightly different than listed in Refs. 1"4. It has the same code

word lengths and thus results in the same performance. However, this arrangement

offers a hardware implementation advantage [12].
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Example. Let

_n=81 _...810=0001000200 (42)

Then, by using (33),

with length

=1110111100111

Fo = 13 bits

(43)

(44)

By complementing, we get

and

FS=000100001 1000 (45)

Ext3[F_S] = (0 0 O) (1 0 O)(0 0 1) (1 0 O) (0 0 O)

Then, by applying the cfs[-] code in Table 1, we get from (40)

(46)

_018 n]=101100101 11 (47)

and

,,_ (/Fo[Sn]) = 11 bits (48)

Observe that by using (41),

70 = 5 + 2 (13 - 10) = 11 = ,,_ (_o[Sn]) (49)

Average Performance. The average measured

added to the-Fig. 8 results in Fig. 9.

performance for PSIO is
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Fig. 9. Average PSI0 Performance

PSI0 performance becomes efficient at the lower entropies precisely where

PSI1 performance begins to pull away from the entropy line. This should not be

surprising; we are coding F"S = PSII[Sn] as a data source and using a Huffman (3-

tuple) code, cfs[.]. When PSI1 starts becoming inefficient, F-S must have some

redundancy left in it.

It is debatable how "efficiency" should be defined as entropies drop below 1

bit/sample. After all, at R 8 = 1 bit/sample, 0.1 bit/sample represents a 10% error,

whereas, at R 8 = 5 bits/sample, 0.1 bit/sample represents only a 2% error. However,

we will make the practical assumption that PSI0 average performance can be called

efficient down to 0.75 bit/sample. We note also that PSI9 from Refs. 3 and 4 can

significantly improve performance as entropies become very low.

Thus, we take the Dynamic Range for PSI0 to be 0.75 < R 5 < 1.5 bits/sample.
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The Unity Code Operator, PSI3

A trivial code operator is obtained by defining PSI316 n] as any fixed-length

binary representation of _n In the simplest case, we can take PSI316 n] as _n itself so

that

_3[_n] = _n (50)

Operators PSI2 and PSI4

We will only make brief note of these two code operators for historical purposes.

They do not form a part of PSI14.

PSI2 is very similar to PSI0. PSI216 n] is obtained by directly using the code in

Table 2 to code its 3-tuples [1]-[4]. That is, perform all the same operations as for

PSI0 but don't complement the Fundamental Sequence. The Dynamic Range for PSI2

is 3 < H 6 ___4 bits/sample.

PSI4, also called the "Basic Compressor," is an adaptive coder, as defined by

PSI11 in Fig. 7 and (21), which uses the options PSI0, PSI1, PSI2 and PSI3. Its

Dynamic Range is 0.75 < R6 < 4.0 bits/sample, as illustrated in Fig. 10.
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Fig. 10. Average Performance, PSI4

Split-Sample Modes

We can limit some of the generality provided in the notation of Ref. 5 since we

are looking for a more specific result here. s

Again, let _n be a sequence of J preprocessed samples where now the "n"

means that these samples are quantized to n bits. Define the basic "Split-Sample"

Operator ssn, k by

ssn,k[_>n] = {IVln,k, i'k} (51)

~0 _--n,k M_'r'n,'-5For additional generality Ref. 5 used Ss_'k[ .] for ssn,k[.], L k for Lk, for, M 0 ,

etc.
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where

Ek= 'k __
t J-sample sequence

of all the k least-

significant bits of

each _n sample

(52)

and l_ln,k is simply the J-sample sequence of the n-k most-significant bits of each _n

sample after removing the least-signficant k. That is

lVln,k= s_'k[_n]= I

J-sample sequence

of all the n-k most-

significant bits of

each sample of _n

and where we note that

ssn,0[_n] _- IvIn,O = _n and ssn,n[_ n] = _-n = _'n

(53)

so that

0 < k _<n (54)

These operations are illustrated in Fig. 11. For future simplicity, we will call ssn, k

simply "SPLIT."
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ssn'k[' j = SPLIT

I

J S=mple,

n-bif block

-..->

--->

n,k
sR [.]

(Eq.52J

n,k
s8 [.]

[Eq. 53)

Lk
7

Least-Significant
k bi_(s

Mn,k
>

HOST-Significctn_
n-k bi_s

I.= .j

Fig. 11. Basic Split-Sample Operator

Motivation. Let H(_n), H(Mn, k) and H(__k) denote the average entropies

associated with _n, _n,k and F_k sequences, respectively. It has been observed that

H(Mn, k) = H(_ n)- k (55)

and

H(F_k)=k (56)

provided that (approximately) H(l_ln, k) > 3 bits/sample.

Equation 56 says that the least-significant bits are totally random, and Eq. 55

says that removing k least-significant bits drops the entropy of what remains by k

bits/sample. More important, Eqs. 55 and 56 imply

H(_ln, k) + H(F_.k)= H(_ n) (57)
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Thus, if both _n,k and r_k sequences can be separately coded efficiently (close to the
entropy), we will succeed in coding the original sequence (_nefficiently also.

Coding /" k sequences efficiently is trivial; since they are random, their uncoded

form is already an efficient representation. For the I_ln,k sequences, we note that they

continue to retain the desired probability ordering of (8) as k is increased (remember

that _n is preprocessed by assumption). Thus, at some value of k, the entropy of IvIn, k

sequences will drop low enough to lie within the Dynamic Range of code operators

such as PSI0, PSI1, PSI4, etc.

Operator PSli,k. Split-Sample "code" operator PSli,k is defined by 6

_/i,k[5 n] = _i[_ln,k] * r_k (58)

The structure of this operator is illustrated in Fig. 12.

Example for PSIl,k. The following should give a practical feel for the Split-

Sample Mode concept.

Let

_)5 =10, 4, 3, 7, 5, 0, 2 (59)

6The order of PSli[_I n,k] and [k in (58) is reversed from the definition in Ref. 5.

Statistically the order doesn't matter, but the arrangement in (58) appears to hold a

hardware implementation advantage [8]-[9]. it also provides a format consistent with

Split-Sample modes generated before preprocessing, as discussed later, where there

are additional advantages to this ordering.
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PSTi,k (Eq. 58)
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Fig. 12. Split-Sample Coder, PSli,k

be a J = 7 sample sequence of 5-bit samples. In binary, _5 becomes

_5=01 0_,001_,000_,001[_,

O0 ljO-i-_, 000_, 000[-_ (60)

where for future reference we have placed boxes around the two least-significant bits

of each sample. Now let's try coding with PSI1,2. A block diagram showing the steps is

provided in Fig. 13.

From the figure we have

,,_ (PSI1,2[_5]) = 26 bits

whereas a direct coding of _5 using PSI1 would require

(61)
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Fig. 13. PSI1,2 Example

,,_ (PSI1[_5]) = ,__.,$j+ 7 = 39 bits (62)
J

Performance for PSI4,k. Again for historical purposes, the performance for

Split-Sample modes using PSI4 (as the coder of most-significant bits) is illustrated in

Fig. 14 [1]-[4].

The figure shows that each increase in k produces a code option PSI4,k whose

individual Dynamic Range has been shifted upward by 1 bit/sample. Further, there is a

PSI4,k Split-Sample option to fit each 1-bit entropy range above 4 bits/sample. The

breakpoints occur near integer entropy values.
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Performance for PSII,k. It should be no surprise that the same type of

curves result when only the simple code operator PSI1 is used to represent the most-

significant bits. Of course, the performance curves start at lower entropies since the

efficient operating range for PSI1 alone is between 1.5 and 2.5 bits/sample (versus

about 0.75 to 4 bits/sample for PSI4).

We will not study the individual characteristics of each PSI1 ,k. Instead, the next

section investigates the composite performance obtained by an adaptive coder which

has many PSII,k options from which to choose. This, in fact, is the basis for code

operator PSI14. For detailed performance curves of the individual PSI1 ,k, consult Yeh

[11]. In fact, she has shown an equivalence between PSII,k Split-Sample

Modes and Huffman codes. This is discussed further in Appendix B.
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CODE OPERATOR PSI14

Definition

PSI14 is defined as a version of adaptive coder PSI11

repeated here as

in (19), which is

_14[ _)n] = ID(id) * _(Zid[_)n ] (63)

=

and which uses three or more "adjacent" code options from the list in (64) and code

option PSI3 (or PSIF). 7

I PSIO , PSI1 , PSI1,1 , PSI1,2,...t
;L= 0 i= 1 t=2 i=3

(64)

Thus, a particular N-option PSI14 configuration is completely specified by

identifying the first option in this list (from the left) to be included. And given this list,

this first option can be specified parametrically by its position in the list

;L > 0 (65)

as shown in (64). For example, X = 2 means the first code option to be used is PSI1,1.

Starting Option. The specification of this starting option can be made quite

compact if we note that both PSI0 and PSI1 are really limiting forms of Split-Sample

modes PSli,k with k = 0. That is,

PSI0 = PSI0,0 (66)

and

7pSIF is the "Fast Compressor" discussed in Ref. 5. In this application, PSIF would

replace PSI3 as an adaptive "backup coder" (see Eq. 50). However, most typical

app]Jcat;ons wouJd receive no statistical benefit.
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PSI1 - PSI1,0 (67)

We can quite generally define a PSI14 Starting Option as

_i(;L),k(_,)for 0 _<_ _<n + 1 (68)

where

=

0 if_,= 0

1 Otherwise

(69)

k(X) =

0 if _. = 0

_,- 1 Otherwise

(70)

and n is the input bits/sample.

Numbering Each Option. We must assign an identifier number to each of

the N codes used in PSI14. By definition, we take

id = N- 1 for PSI3 (71)

Then we take

id=0 (72)

for the starting option at position _ in the list of (64). All other options (to the right of this

starting option) are assigned increasing id values as the list is traversed to the right.

Parametrically, this is very straightforward. The idth option is

_i(X + id), k(X + id) (73)
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for

0<X<n+l and0<id<N-2

Note that X can have n + 2 possible values (0 through n + 1); this is the maximum
number of coders available. Then

N _<(max no. of coders)- (startingcoder no.) = (n + 2) - _, (74)

Looking closely at (54), (71) and (73), we see that parameters N, ;L,and n

completely define any PSI14, Including the identifier to use in (63). We

will later see that these parameters also define the corresponding PSI14 Dynamic

Range.

Example. Let N = 6 and X = 3. Then a complete PSI14 code specification can

be obtained from (68)-(74), as shown in Table 3.

When X > 1. If we exclude PSI0 from the possible options by restricting ;L > 1,

a considerable simplification in notation results since

i(X)= lforalIX

and

k(;L) = _,- 1

Then, a PSI14 coder with parameters N, X and n has code options

PSII,_L-I+id for0_<id<N-2

and

PSI3 - PSI1 ,n for id = N - 1
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where id is the identifier associated with each option. Under these restrictions, PSI14

reduces to PSIss, as discussed in Ref. 7. Further restricting 7. to be fixed at 7. = 1 yields

the basis of VLSI implementations [8]-[9].

Table 3. PSI14 Specification Example

forN =6,7.=3, n >7

Code

Identifier

Number, id

0

1

2

Binany
Identifier,

ZD(id)

000

001

Code Used,

PSI1,2

PSZI,3

010 PSI1,4

3 011 PSI1,5

4 100 PSII,G

5 101 PSI3

More Generality. We will henceforth refer to the above definitions. However,

it is worth noting that we can further extend the generality of PSI14 by allowing 7. < 0 to

specify additional undefined code options PSI-l, PSI-2 ..... These can be

incorporated into the definitions here by noting that PSI-_ - PSI-t,0 as in Eq. 66.

Equations 69 and 70 become

and

i(7.) =
I _, 7.<01 Otherwise

k(7.) =
O ifT._< 0
7.- 1 Otherwise
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PSI-_ might designate legitimate low-entropy options or simply act as escape

mechanisms to alert a decoder that subsequent coding will be using completely

different algorithms. Such escape mechanisms could also be provided by using code

identifiers id > N.

Decision Criteria

Optimum. The optimum criterion for selecting the best option to represent _n is

to simply choose the one that produces the shortest coded sequence. Using (4) we

have

Choose coder option id = id+ if

,_ (_O_id+ [_n]) =
min
id {"_ (_'_id [_n])} (75)

Simplified. The latter approach implies that each coded result must be

generated to determine which option to use. The computation requirements can be

drastically reduced by using estimates instead.

Let

7O_id+(_n) : _ (u,,,O_id[_n])

be the estimated coded length by using code option PSIo_id. Then the simplified

decision criterion becomes:

Choose coder option id = id+ if

min
y(Zid+ (_n)= id {1,(Zid((_n)} (76)

Now consider estimates for the specific PSI14 options in (64).

Trivially we have
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'_(_3 [,_n]= 3'((_n)= nJ (77)

For convenience, we repeat (43) here as

,_ (_o['n])= _o(6n) = [_---QJ + 2(Fo-J )

Now consider the PSI1 ,k options in (58). First we have

(78)

,_ (V 1 ,k[(_n]) = ,,_ (_l[IVIn,k]) + Jk (79)

since the length of the separate least-significant bit sequence is fixed.

Extending notation, we let

Fk = ,,_(VI[lVln,k]) (8O)

be the length of the Fundamental Sequence for the n-k most-significant bits I_ln,k. The

special case for F0 is shown in (30) to be simply the sum of the samples of IVIn,0 = _n

plus the block size J. This same calculation applies more generally to the samples of
I_ln,k.

Taking advantage of the randomness in the least-significant bits, the expected

value for each F k can be related to F0 by[5]

J
E{FklF O} = 2 -k F0 + _ (1 - 2 -k) (81)

By using (81) we can then estimate the overall length for each PSII,k option as, from

(79)

J
,,_ (_1 ,k{(_n]) = _'1 ,k((_n) = 2-k FO + _ (1 - 2 -k) + Jk (82)

Using the simplified decision criteria in (76) with the estimates in (77), (78) and

(82) leads to clear-cut decision regions based on FO. An example for an 8-option

PSI14 with starting option PSIO(t = O) is shown in Table 4.
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Table 4. PSI14 Decision Regions, N = 8, X = 0

Code

Option

Decision Re9ion

H=8, _=0
,. ,., .........

PSZ0 Fo _; 3J12

PSI1 3J/2 < Fo _ 5J/2

PSI1,1 5J/2 < F0 _< 9J/2

PSI1,2 9J/2 < F0 __17J/2

PSZ1,3 17J/2< F0 _<33J/2

PSI1,4 33J/2< Fo_<SSJ/2

PSI1,5 85J/2 ( Fo-- (84n-351)J/2

PSI3 (64n-351]J/2 < F0

It is a simple matter to create equivalent tables for other PSI14 configurations.

Modified Simplified? The basic assumptions in determining the decision

regions for the various PSIi,k options in Table 4 are based on the inherent

randomness in the least-significant bits being split. This is a very good assump-tion for

all but the F0 > 5J/2 decision point that determines whether PSI1 or PSI1,1 should be

chosen.

At low entropies, below 3 bits/sample, the least-significant bits start becoming

less random. Consider how this affects the optimum decision point given by Ref. 5.

Choose PSI1,1 if

F0 _ 3J - T_,(least-significant bits) (83)

If half of the least-significant bits are ones (corresponding to random), PSI1,1 is better

if F0 > 5J/2, the same result as in Table 4.
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However, as entropy drops there is a greater tendency for more zeroes to occur

than ones, which culminates in all zeroes at an entropy of zero. With more zeroes, the

decision region Specified in (83) moves upward. This leaves open the question of

whether the fixed simplified decision point of 5J/2 in Table 4 should be adjusted

upward.

One can expect only minor average performance gains, if any. Actual

comparisons between the simplified rule in Table 4 and the optimum rule indicate very

little advantage for the optimum rule.

Baseline PSI14 Performance

PSI14 coders which use code options PSI0 or PSI1 as their starting option (X =

0 or X = 1)are called "Baseline" PSI14 coders.

The average measured performance for N = 8 Baseline PSI14 coders is shown

in Fig. 15.
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Fig. 15. Baseline PSI14 Performance, N = 8, ;_ = 0, 1, n = 12
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These graphs were primarily derived from 12-bits/sample imaging spectrometer
data and assumed a block size of J = 16. Some areas above 8 bits/sample were

approximated since very few samples were available. But exact precision is not the
issue here. These curves are approximately correct for almost any real problem. The

major observation is that efficient performance from ~0.75 bit/sample to 7.5

bits/sample can be achieved with an 8-option PSll4 coder with starting option PSIO.

This roughly 7-bits/sample Dynamic Range can be pushed upward by about 1

bit/sample by starting with PSI1 as the first option. The additional top-end performance

is obtained at the expense of some low-end performance.

The corresponding graphs for Baseline PSI14 coders with N = 4 options are

shown in Fig. 16. Voyager images were the source of the data [5]. With only four

options, the Dynamic Range is, of course, much narrower.
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Fig. 16. Baseline PSI14 Performance, N = 4, % = 0, 1, n >_6
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Coding for Very High Entropies

The performance curves for the 8-option Baseline PSI14 coders in Fig. 15

provide a broad Dynamic Range, which should be adequate for many applications.

However, many newer scientific instruments have pushed the quantization

requirements to much higher levels, some to as much as 16 bits/sample. The

consequence is that entropies above 8 bits/sample (viewed as "Very High Entropies")

may be present much of the time. This can lead to inefficiencies if restricted to the

Baseline PSI14 performance curves in Fig. 15.

Adding Options. Each additional PSII,k option added to a Baseline PSI14

coder will extend the top end of the Dynamic Range upward by 1 bit/sample. Thus,

one solution is simply to add more options until the expected "very high" entropy range

is covered.

Assuming the simple fixed-length representation for the code identifier as

specified by (25), to increase the number of options beyond N = 8 to the 9 < N < 16

range will require an additional identifier bit. The potential performance impact is, at

most, 1/J bits/sample or 0.0625 bit/sample for a typical block size of J = 16.

Performance can still be considered "efficient."

Such a penalty is probably insignificant considering the almost 15-bits/sample

Dynamic Range provided by an N = 16, J = 16 Baseline PSI14 coder. Moreover, if the

data source causes frequent and significant variations in data entropy, the 1/J cost will

be more than compensated by the ability to choose from a greater number of options.

Moving the Operating Range. After looking more closely at the class of real

problems which generate very high entropies, it may not be necessary to add more

options. We note that:

As the highest expected data entropies increase, so usually do the

lowest. Thus, the complete range of expected entropies tends to

move upward, not just the top end.

Efficient coding performance is really only necessary over the

expected range of data entropies.

(84)

(85)
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The maximum expected range of data entropy (max entropy - min

entropy) is unlikely to be as large as the Dynamic Range of

efficient performance exhibited by an 8-option Baseline PSI14, as

shown in Fig. 14 (approximately 7 bits/sample). (86)

These observations point to two other approaches to very-high entropy coding

without extending the number of options•

The first approach is inherent in the general definition of PSI14 in (63)-(73).

Just pick a starting code option for a non-baseline 8-option coder (i.e., X > t).

That first code option determines the lower end of efficient performance for your

PSI14 coder. Pick that option so that the full 7-bits/sample Dynamic Range is centered

over the expected entropy range of your problem. Table 5 should help guide you in

that decision; it is derived from the performance runs in Fig. 15 and simplified decision

rules, as in Table 4.

Table 5. PSI14 Dynamic Ranges for 8-option Coders, J = 16

s{.,{i.9 DYNAMICc_.,,oeyi R_N_C
0p,ion from 0_ [_;cien_ Performa.ce

IGB)-[70) Ib;_s/samplel

o Pszo,o , o.Ts _<_ _<_.s
1 pSXi,o..... l_<a-,_<8.s
2 Psn,l 2,s _<_ _ s.s
3 PS11,2 3.5 <_.H_ _< 10.5

,, , • . , .

4 PSI1,3 4.5 < H_ _< 11.5

s vSzl,4 s.s < _, _<12.s
,L

; G PSZI,S G.5 _ g_ _.<13.5
o

z 'e4_c e'l:c e4_c
j w w •

.L
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Parametric Dynamic Range. In fact, we can extend these results to specify

the Dynamic Range for any PSI14 with parameters N, n and _..s By using (69) and

(70), we have 9

In_. + 0.75 - 0.25 i(_.) < H5 < min _,+N-0.5 (87)

Note that the implementation of a PSI14 coding module with a shiftable

Dynamic Range would require external control of the parameter _ (starting option).

We will later return to the issue of Dynamic Range after discussing another

approach.

CODE OPERATOR PSI14,K

Another approach that is statistically equivalent to the Non-Baseline PSI14

coders suggested in Table 5 is obtained by returning to the basic definition of Split-

Sample code option PSli,k, which is specified in (58) and Fig. 12.

PSli specifies the coder that is used to represent the most-significant n-k bits

after splitting off k least-significant bits. The original Split-Sample coders used PSI4 for

PSli. In looking for implementation simplification, PSI1 was investigated and that led to

PSI14, a coder which (except for PSI0 and PSI3--which is actually PSII,n) uses

various PSI1 ,k as code options. Now replace PSli with PSI14 itself.

From Fig. 12, and using a capital K for the number of split least-significant bits,

the code "option" PSI14,K becomes that shown in Fig. 17. The internal PSI14 is shown

with parameters N and X to indicate the number of options and the starting option,

respectively.

8Some caution should be used in the interpretation of (87) for small block sizes (J <

12), where the impact of identifier bits becomes increasingly significant. The subject of

identifier coding is addressed in Chapter 4.

9Where the first term would simplify to X + 0.5 when X _>1 [7].
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Fig. 17. Split-Sample Coder PSI14,K

Performance for K = 0

With K = 0, all data pass directly to the internal PSI14, so that

PSI14,0 - PSI14 (88)

Thus, PSI14 is really a special case of PSI14,K. If the internal PSI14 in Fig. 17 is an N

= 8 option Baseline PSI14, the Dynamic Range is given in Fig. 15 and (87). We will

henceforth use this new notation for PSI14 to emphasize the identity when K = 0.

Performance for K > 0

To see what happens when K _ 0, note again that by (66) and (67), ALL the

options specified for PSI14,0 are of the form PSli,k. Returning to Fig. 17, it is easy to

see that the net effect of a split of K bits is effectively to transform each PSli,k in the

internal PSI14 into another Split-Sample option with K additional splits. That is,

equivalently for _. > 0 and 0 _<id < N-2,

_i(;k.+id),k(Z+id) _ _i(Z+id),k(Z+id)+K (89)
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With each code option affected in the same manner, it should be clear that the

entire Dynamic Range for any PSI14,K will be shifted upward by 1

bit/sample for each increase in K. _o

as 11

Then we can specify the Dynamic Range for any PSI14,K configuration for K ___0

InK + 0.75 + _. - 0.25i(_L) < H(5 < min K+_,+N-0.5 (90)

Remember, efficient means average performance close to the entropy. It

doesn't mean that slightly better performance isn't possible under certain conditions.

That is, one "efficient" coder option may still be better than another "efficient" coder

option over a particular range. With this in mind, we look next at the comparison of an

N-option PSI14,K and its closest equivalent N-option PSI14,0.

INTERNAL X ___1. If we momentarily exclude the possibility of using PSI0 as a

PSI14,0 option, we can say that for any N-option PSI14,K there is an equivalent

PSI14,0 with exactly the same Dynamic Range. That is:

If an N-option internal PSI14,0 of PSI14,K starts with option PSII,k(X), X > 0,

then an N-option PSI14,0 that starts with PSI1 ,k(X) + K will exhibit the same Dynamic

Range for K > 0.

INTERNAL X = 0. When we include the possibility of PSI0 as the starting

option we cannot make as precise a statement.

Consider the case where K = 0, 1,2. The effective options for PSI14,K are

10Of course, this is not precise when the top end of the performance range

approaches n, the number of quantization bits. The same is true at the very low end

where the LSBs are not totally random, as discussed earlier.

11 Subject to the same caution for small values of J < 12.
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\

K = 0 PSI0,0 PSI1,0 PSI1,1 PSI1,2...

K = 1 PSI0,1 PSI1,1 PSI1,2 PSI1,3...

K = 2 PSI0,2 PSI1,2 PSil,3 PSI1,4...

(91)

Indeed, the Dynamic Range will shift upward by approximately 1 bit/sample for

each increase in K. But are these configurations identical to some PSI14,0 with a

different starting option?

For this example, and in general, there is no PSI14,0 configuration that includes

starting option PSI0,k' for k' > 0 as an option.

If we replace starting option PSI0,k' with PSII,k'-I, we do get a legitimate

PSI14,0 defintion since all the code options after the first already fit. So the only

question is, How does PSI0,k' compare with PSII,k'-I? This comparison is

statistically the same for every k' _>1, it just happens at different overall entropy values.

So we only need to compare PSI0,1 with PSI1 = PSI1,0 at low entropies; at higher

entropies, other options will be used.

We provide this comparison in Appendix C and Conclude that over the low

entropy range of interest, the average performance of PSI1 is probably always slightly

better than that of PSI0,1. Using this observation and (90), we can say that for K > 0;
==

over the entropy range of the first option

0.5 + K< R6< K + 1.5 (92)

a PSI14,K with internal N-option PSI14,0 with Z = 0 will not perform quite as well as

one with internal N-option PSI14,0 which starts with PSI1,K-1. Performance over the

remainder of the Dynamic Range should be identical.

From Yeh's result this is not surprising [11]. She showed that the PSI1 ,k options

are equivalent to Huffman codes over the range of interest.
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PSI14,K vs PSI14,0 for K > 0

Basically, the difference in performance between any PSI14,K configuration

and its nearest equivalent PSI14,0 is either nonexistent or too minor to exclude one

approach or the other. The choice should be based on implementation considerations.

Let us now discuss some specific implementation examples.

Single Dynamic Range. Here we must design a coder which works

efficiently over a single prescribed entropy range. If this coder is being designed from

scratch, there is no point in including PSIO as an option since it offers no advantage

when K > 0 (higher entropies). Under these conditions, the performance of either

approach is identical. On the surface at least, it's a toss-up.

However, if the design of a fixed PSI14,0 with starting option PSI0 already

exists, it is clearly simpler to turn it into a fixed PSI14,K than to redesign a new PSI14,0

with a new _. to meet a specific Dynamic Range goal.

Multiple Dynamic Ranges. In this case the implemented coder must include

an external parameter to adjust the Dynamic Range: Either K for PSI14,K or _ for

PSI14,0. Now K _>0 and ;L _>0 are possible all in the same coder. External control of

these parameters would be essentially identical to a user.

A PSI14,K has one major advantage: The adaptive part of the coder is fixed

(i.e., the internal PSI14,0). All the code-option decision making and the assignment of

identifiers would not change as K was adjusted. This is not true for a PSI14,0 with

adjustable _..

On the other hand, PSI14,0 with adjustable _. maintains a slightly simpler output

format. But overall, the edge in simplicity for this situation seems to be with PSI14,K.

Stretch PSI14 (sPSI14)

Another way to obtain a broad Dynamic Range, at some penalty in

performance, is to build an adaptive coder that only uses every other standard PSI14

code option; we denote this by sPSI14.
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By using the notation developed in (63)-(73),

options of an N-option sPSI14 by

_i(Z+2id), k(_.+2id)

fork> 0 and 0 <id < N-2

we can define all the code

(93)

and, as for PSI14 itself,

_O_N_1 - _3 (94)

Such an sPSI14 will have a "potential" Dynamic Range given by

t°_. + 0.75 - 0.25i(_.) < R6 _<min _.+2(N-1)-0.5 (95)

for n-bit input data. For large N, this is roughly double the range given in (87) for a

PSI14 using the same number of options.

We say "potential" Dynamic Range because there is a performance penalty in

skipping options.

The consequence should be apparent from Fig. 18, which shows how the

performance of three adjacent PSII,k are related. These graphs are not precise and

are only intended to make a point. Greater accuracy under various conditions is

provided by Yeh [11].

Referring to Fig. 18, an sPS114 would have options PSI1,m and PSII,m+2 but

not PSI1 ,m+l. Under ideal stationary conditions, the average performance given up

by not including PSII,m+I is indicated by the crosshatched region (adjusted slightly

because generally one less identifier bit would be needed). Under most real

conditions, it is speculated that this average penalty will be spread over a broader

entropy range. An sPSI14 performance curve will look like a slightly inefficient and

"bumpy" PSI14 performance curve over the same entropy range. Specific details must

await simulations.

52



m+4.S

Q.

u)
%
tn

..4"m+2.S

.a

Z m+l.S

ev i
0 i
IL
eV
!,i
ft. /

0,0

PSZl,rn+2.

PSZl,m+l

PSIX,_ /

,J

/

,/

|

t /

/.,,

7

rn+l.S m+2.S m+3.S m+4,S

ENTROPY HB' bi_s/somple

Fig. 18. Skipping an Option

CURRENT VLSI IMPLEMENTATIONS

GSFC and the University of Idaho have implemented a custom 1.0-pm CMOS

VLSI version of the Coding Module in Fig. 4, as well as a compatible "decoding"

module [8]. The coder incorporates most of the general-purpose functionality in that

diagram. However, the PSI14,K coder included is actually PSI14,0 with N = 12

options, ;L-- 1 and J = 16. Input quantization can vary from n = 4 to n = 14. The coder

and the decoder were recently tested successfully under laboratory conditions. The

coder was operated at input data rates of up to 700 Mbits/s and the decoder at half that

rate.

JPL has used different technologies to implement two custom 1.6-pm CMOS

VLSI versions of the Coding Module in Fig. 4. Because of certain instrument-specific

constraints, these modules include fewer of the more general functions of Fig. 4. The

internal coders are in each case PSI14,0 with N = 11 options, 7. = 1, J = 16 and

allowance for input quantization of n = 12 bits/sample. Both versions have been tested
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in the laboratory at up to 180 Mbits/s [9]. An enhanced version of this coder is being

implemented for the CRAF/Cassini project.
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IV. OUTSIDE THE MODULE

Chapters II and III have filled in the details of coding module PSI14,K+ shown in

Fig. 4. This chapter briefly addresses some issues relating to the use of PSI14,K+

within a "compression system."

EXTERNAL SPLIT-SAMPLES

One interesting observation that can affect a compression system's

implementation is that the concept of Split-Sample Modes can also be accomplished

outside the module for many applications, as illustrated in Fig. 19.

n-bi_ da'_=

X = x1x2"'xJ

>

Fig. 19. Internal vs External Splits

In this illustration"

is a "raw" n-bit data sequence (e.g., imaging or magnetometer data).

The indicated PSI14,K+ uses the built-in preprocessor directly or with an

external predictor.
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The upper coding process, within the dashed lines, first performs an t-bit

split directly on ,X. By using the Split-Sample coding structure shown in Fig. 12, the

sequence of most-significant n-t bit samples of ,X (i.e., : n,tM x ) are coded by PSI14,K+,
~X

and the least-significant t-bit samples (i.e., L_) are passed on unchanged.

In the lower coding process, all _( is passed directly to a PSI14,K+ module

where the parameter K has been increased by t to K' = K + t.

The message from this figure is that the upper and lower coding processes

perform almost identically and exhibit the same Dynamic Range. 12 Computer

simulations indicate that performing Split-Sample operations all with PSI14,K+ (the

lower path) gives a slight edge in performance of less than .05 bit/sample [5].

Some observations:

The effective Dynamic Range of a given PSI14,K+ module can be shifted

upward externally to the module (e.g., to entropy values not supported by

the largest value of K or _). The Galileo image compressor uses this

approach to shift the performance for a complete image line [13].

A PSI14,K+ module that can only accommodate data quantized up to n

bits/sample might be usable on n+t bit data if the upward t bit/sample

shift in Dynamic Range is acceptable. For example, a PSI14,K coder with

a Dynamic Range 2.5 < H5 < 8.5, which was originally designed to work

only on 12 bits/sample data, could now be used on 14 bits/sample data,

but with a new Dynamic Range of 4.5 < H5 < 10.5.

Another advantage is provided in systems employing Priority Driven Rate

Control, as discussed in a later section.

12This would also be true for PSI14,0 with starting option parameter ;_increased by t.
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DECODING PREPROCESSED DATA

PSI14,K+ allows for input data to be passed directly to the adaptive variable-

length coding section, PSI14,K without preprocessing. An input block _n is coded as

PSI14,K[_n]. Given this coded sequence, _n can be reconstructed precisely; no other

information is required. This is not necessarily the case when preprocessing is

involved.

Let us review the preprocessing and coding process at the sample level. The

error between a sample xi and its predicted value _i produces the error value

Ai = xi- _i (96)

which is converted to

5i (97)

by the reversible process in (17), or by (18) and (19). Blocks of 8 i are then coded.

During reconstruction, each A i can clearly be retrieved by reversing these steps. Then

the original sample xi can be reconstructed as

A

x i = x i + A i (98)

Thus, reconstruction of any individual sample can be accomplished, provided that its

original prediction is known or can be recomputed from available information.

To see how this fits various applications, we must define some terms to handle

sequences of blocks. Let

= ,X1 " 'X2 *...* ,Xm (99)

denote a sequence of blocks, where the individual 'Xi are known a priori to be Ji

samples long, so that

Xi = xi,1 xi,2 • • • xi,j i (loo)
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The corresponding vector of prediction values used during the coding process is then

A
A A A

Xi = xi, 1 xi,2 ... xi,Ji (101 )

and the resulting error sequence is then

Ai= Ai,I Ai,2•..Ai,Ji (102)

where

A

Aifl = xifl- xifl (103)

The equivalent prediction and error sequences for multiple blocks are then

A A A A

X= Xl * X2*-.. Xm (104)

and

_=_1 * _2"... Am (105)

A

We can then say that all X can be recovered precisely from 7_,provided that X is

known or can be computed.

Thus, the coding of each ,Xi by PSI14,K+ is really a function of the prediction

used, as

A

PSI14,K + [Xi, Xi] (106)

rather than the short form

PSI14,K+[Xi] (107)

which we have been using (and will continue to use); (106) merely emphasizes what

we have implicitly assumed in (107).
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One-Dimensional Predictor

For this case we assume that the X in (99) really represents a partitioning of a

single long sequence of sampled data from a single source into several smaller

blocks. That is, the first sample of Xi follows the last sample of block _(i-1. All the

samples are adjacent in time. For example, X could represent a single image line.

Using the built-in predictor of PSI14,K+ means predicting that the next sample

is the same as the last, so that for block ,Xi

A

xi,.e = xi,._-I for ._ > 2 (108)

and

A

xi, "_ = xi-1 ,Ji-1 for .e = 1 (109)

This means that the prediction is always known, provided that a "last sample"

exists. This is true except for the first sample of the first block x 1,1. Prediction for the

first sample must be supplied to "initialize" both a PSI14,K+ coder and decoder. The
A

coder must have x 1 ,1 to generate the first error, A 1,1, and a decoder needs it to
A

recompute the first sample x 1 ,1 = X1,1 + A1,1- This initial prediction value is usually

called a Reference Sample.

The overall coding of X can be described by

+ 14,K[_ 1 + ~ + ~_'15,K[_J = REF* _ ]* _14,K[X2] •... • _14,K[Xm]

where it is presumed that the PSI14,K+ module is initialized by "REF."

(11o)
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In practice, REF can be obtained in several ways:

a) If REF is known, it can be omitted altogether.

b) If REF was set to some arbitrary known constant, it could also be omitted.

However, the initial A1,1 could be quite large, causing the wrong code option to be
used for the remainder of the first block, XI. This could be expensive in bits.

c) REF could be set to the first sample in ,_1, causing the initial difference to

be a zero. Keep in mind that the contribution of a zero to any Fundamental Sequence

is only 1 bit (see 27).

d) The first block can be split into two parts: A Reference Sample and a new
v

J1 - 1 sample block X1 that begins with the second sample of X1, as illustrated in Fig.

20.

X-"" ,,I,, X-t^1,1)_,^1,2 l,s '"
\.,,.,.._., ,,./t

X,
.__.A. ......... -'k

Xl,J1)

'a

$,K 4,K 4,K

Fig. 20. Reference Sample Extraction

This approach can be better than (c) by only 1 bit, but there seems to be a

hardware advantage [8]. Consequently, the University of Idaho VLSI team has

incorporated the capability to extract a Reference Sample in this way into their current

VLSI module implementation.
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External Predictor

The PSI14,K+ module allows for input of an external prediction on a sample-by-

sample basis. We will consider a few practical applications here. First, note that the

form of coding specified in (109) does not really depend on the type of predictor used.

Of course, the actual prediction must be known for each sample by both coder and

decoder. PSI15,K+ defines the form for coding a sequence of blocks using PSI14,K+,

regardless of the prediction method used. The REF sample may or may not actually be

present.

Two-dimensional (2-D) Arrays. Fig. 6 introduced the concept of using 2-D

prediction for image applications. We can now be more specific about formats and

initialization problems.

To aid in the discussion we again extend our notation to include a parameter to

specify the jth line of a 2-D array. Then

^ ^

{X, Xi, X i.... } -> {X(J), 'Xi(j), 'Xi(j) .... } (111)

where now X(j) represents the jth line, etc. For simplicity we presume that the length of

any block in one line is the same as the corresponding block in another line, as

illustrated in Fig. 21.
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Fig. 21. Two-Dimensional Array

Using Fig. 6, we have the equation for a 2-D prediction of the .eth sample in the ith

block of line j, as 13

^ xi,._-l(j) + xi,_(j-1)
xi.e (j) = 2 (112)

where xi,_ 1 (j) is interpreted to be the last sample of the preceding block, xi_ 1 ,j (j). This

is a legitimate prediction, provided that each term exists. Unfortunately, such is not the

case for all i,j,._. We need to investigate how the predictions should be modified to

ensure the reconstruction of xi,Jt (j) as

^

xi,_ (j)= xi,_ (J) + ai,.¢ (j) (113)

13Ther e are other possible versions which could be substituted for Eq. 112. In most

cases they are unlikely to alter performance significantly.
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Consider the most common arrangement for coding and decoding: Line j

follows Line j-l, and each line is coded from left to right.

When X(1) is coded, there is no previous line, so the term xi,.e (j-l) is not valid.

Thus, X(1) should be coded with a one-dimensional (l-D) predictor, as described in

the previous section.

On subsequent lines, only the first term of the first block is missing, x 1 ,l(J) in

(112). This could be handled in a number of ways. From a performance point of view,

the best method is to employ a 1-D prediction by using the first sample from the line

above, as

^

Xl,l(j) = x1,1(j-1) (114)

This is generally as good as a 1-D prediction in the same line.

Fig. 22 reviews the prediction strategy described above.

REF

Fig. 22. 2-D Prediction Regions, Common Format:

Top-to-Bottom, Left-to-Right Coding

63



The array coding format for the jth line takes the form from (110)

15,K[,_(J)] + K['_1 T4,K[xm(j)]= REF*_14 ' (j)] *... *_/ (115)

If the prediction of (114) is used, then REF will be present only for j = 1. In either

case, the coding of the complete array takes the form

15,K[,_( 1 +_ )]* _15,K[X(2)] *... (1 16)

that is, coded line 1 followed by coded line 2, etc.

Sensor Noise. Some scientific instruments generate a two-dimensional

image by "sweeping" a single line of individual one-picture element sensors across a

target. The sweeping action is usually supplied by spacecraft motion. For example, the

High-Resolution Imaging Spectrometer (HIRIS) instrument [14] will simultaneously

sweep 192 such line sensors, each representing different spectral bands (and

producing separate two-dimensional images). The direction along the swept line is

usually called "Cross-track" and the direction being swept is called "Down-track."

Figure 23 is provided to help keep these distinctions in mind.
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Fig. 23. Images Formed by Swept-Line Sensors

The figure shows a single line of sensor elements (running cross-track) from

each spectral band. At time t1, each line of sensor elements is exposed to a

corresponding line of reflections from earth, which creates a single digital line of a

familiar image (see below).

The composite of all such lines is called a "frame." At time t2, the spacecraft has

moved the "view" of each line sensor to the next "Down-track" position, which creates

a second frame. At time t3, the view has again moved, and so on. The composite of the

digital lines created by each swept spectral line forms a two-dimensional image, as

illustrated for the first spectral band.

Unfortunately, the individual uncalibrated sensor elements of today's

instruments tend to have different gain and offset characteristics. This means that each

sensor element will not necessarily generate the same output for a given input. The

result appears as an additional randomness (which we can call SENSOR NOISE)
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when trying to predict the values of one sensor element by using the known values of
another along this line (cross-track). That is, for example, the use of the built-in

predictor of a PSI14,K+ module. The consequence of this additional randomness is an

increase in prediction entropy, and hence code rate. The potential impact on code rate

caused by this Sensor Noise is discussed in Appendix D. Although there are really no

hard numbers available at this time, the potential increase to Cross-track prediction

entropy for some of the latest high-performance instruments could be as high as 1

bit/sample.

But note that a prediction based on the same sample in the previous line (e.g.,
A

Xl ,l(J) in Eq. 114) would not be affected since both samples originate from the same

sensor element, as a result of sweeping the line of sensor elements (see Fig. 23).

Then, by assuming symmetric data characteristics, a lower prediction entropy would

be achieved by predicting using only the "previously generated" line. By extending Eq.

114 to all the samples of a line, we have

A

xi,.e (j)= xi,._ (j-1) (1 17)

Note that using this kind of "Down-track" predictor does not mean that a large multi-

line buffer is necessary. Only the previous line is needed to produce the predictions in

(117): The coding still takes the form in (116). Only the predictor has changed, as

illustrated in Fig. 24.
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Fig. 24. 1-D Down-Track Prediction Strategy

for an Uncorrected Swept-Line Sensor

A similar look at a two-dimensional predictor reveals that it would be affected

less than a left-to-right 1-D prediction because only one of the terms in (112) has noise

riding on it. But typically the most one can expect to gain from a two-dimensional

prediction is about 0.5 bit/sample reduction in entropy. This advantage might easily be

canceled by the above-mentioned noise effects for some current modern instruments.

More General 2-D. It should be noted that the presumed line-by-line, left-to-

right ordering in the examples described above is really a convention, not a constraint.

The real constraint is spelled out in (96) to (98): The coder and decoder must

ultimately use the same prediction for each sample that is coded and decoded. There

is no reason that lines could not be coded in opposite directions, or in any order,

provided that appropriate modifications are made to the prediction strategies to assure

compatibility between coder and decoder. In fact, we will need to take some liberty in

such assumptions in later discussions to avoid getting bogged down in notation.
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In particular, to aid discussion of higher level issues, we will use

PSI2D (118)

to denote a general purpose 2-D array coder, of which Figs. (22) and (23) and Eqs.

115 and 116 provide good examples. When we specify PSI2D, we will generally

ignore coding details and focus on prediction strategies and the relationship of one

array to another.

Extreme Reordering Example. An extreme example of reordering the

coding and communication of a 2-D array is shown in Fig. 25. Here it is presumed that:

1) A large 2-D array, _,, is partitioned into 16 equal-size sub-arrays,

_,1, A2, .. • _'16. (119)

2)

3)

All the data (each _,i) are generated in a buffer before coding

beginsl

A prescribed order of coding and communications of the _'i is

(120)

_'7, _'2, _'5, _'3, A6, _'15,

_,8,,_13,_,10,_,11,_,1,_,9,

_,14,_,4,_,12,_,18 (121)
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Example: Changing the Order of

Coding 2-D Sub-Arrays

More generally, we see that (121) is a special case for an ordering specified by

O(,&) = 01 02... 016 (122)

where Oj = array number for the jth coded sub-array. For the specific example in (121)

and Fig. 25

0(_,) = 7, 2, 5, 3, 6, 15,8, 13,

10, 11, 1,9, 14, 4, 12, 16

(123)

Clearly, the coding of each _'i can take the form in (115) and (116), or more

generally PSI2D in (118). The only significant unanswered questions are, How are the

prediction of _'i samples specified? and Do we need to communicate additional

information on the transmission ordering of the Ai?
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Case I: The _,i are independently coded (no information from surrounding sub-arrays

is used), and the ordering of sub-array transmission is known a priori at the coder and
decoder.

No other information is needed, so the coding of _, will appear as

PSI2D[_,7] * PSI2D[_,2] * PSI2D[_,5] *... (124)

for the example specified in (119)-(121 ).

Case II is the same as Case I, except the ordering of sub-array transmission (coding)

is unknown a priori to the decoder. Then the coding of _, can be described in general

by the format

O(_,) * PSI2D[A01] * PSI2D[_,02]*... (125)

or

01 * PSI2D[A01 ] * 0 2 * PSI2D[_,02 ] *... (126)

where the order numbers (see Eqs. 122, 123), would, of course, be converted to

binary numbers for use in (125) and (126).

For the specific ordering in (121), (122), and Fig. 25, (126) becomes

7" PSI2D[,_7] * 2* PSI2D[_,2] *... (127)

Case III is the same as Case II, except that the predicted boundary samples of any _,j

can make use of adjacent samples from surrounding _,j.

The additional rule to follow is simply that the boundary samples from adjacent

sub-arrays can be used in a prediction IF that sub-array has already been coded and

transmitted (so a decoder would be able to use the same data). To illustrate, Fig. 25

exhibits arrows pointing across the boundaries between sub-arrays. Arrows from _'k

into ,_,j mean that the corresponding adjacent samples of _,k can be used to improve

the prediction of _,j. In the Fig. 25 example, the top row of _'6 can be used to aid the
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prediction of the bottom row of A,10, because A6 is transmitted before _,10.
A A

xi,._ (j) would become xi, t (j) = xi, _ (j+l) instead.

In (117),

Of course we are ignoring details, but it is important to note that the algorithm

which specifies how (and if) the coding of a particular _,j will use the samples from (the

boundaries of) adjacent sub-arrays can be determined solely by the order of

transmission. No other information is necessary to tell a decoder what the coder did.

Whether the additional coding gains obtained by improved prediction on the

sub-array boundaries are worth the additional complexity is another question

altogether.

An Archive. The manner in which an array _, is used can produce other

constraints which may override the quest for maximum coding efficiency. While the

arrangement suggested in Case III above might provide a slight improvement in

efficiency~ over Case I and II (a lot depends on the size of the _,j), full knowledge of all

AOj, i < j is required~ to~decode _'Oj- In the worst case, all _, must be decoded in order

to decode the last Aj (A 16 for the specific order in (123)).

In an image archive, _, might represent a complete image, and the _'i might

represent spatial subimages (with typically many more than 16 subdivisions). In this

case it is clearly desirable to be able to directly access and decode selected _,i without

the need to decode a complete image.

All A could be represented as in Case I and (124), repeated here for

convenience, and now assuming a standard ordering P'I, ,_2, _'3 .......... _,16-

I PSl2D[A1] PSI2D[A2]i PSI2D[A3]*""

START START START

OF IMAGE OF _'2 OF "_3

(128)

Now, each PSI2D[_,i] is variable length and embedded within the longer coded

string of (128). The problem is that a decoder can only extract _,j without the need to

decode those _,i in front of it, provided that it knows where PSI2D[A,j] begins (in the
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overall coded string of binary data in (128)). That is, without this specific knowledge,

_,1, _'2, _'j-1 would have to be decoded first.

So, let TM

_j = o_ (PSI2D[_,j])

and

L(A) = .e1 .e2 .e3...

Then, ,_ can be coded and stored serially as

(129)

(130)

_r

LiA)* PSI2D[_'I] { PSI2D[_,2] * PS 2D[7,3]f...

(131)

or

_ 1 * PSI2D[A1] * "e2 * PSI2D[A2] * "it3 * PSI2D[A3] * ... (132)

In (131), L(A) is maintained separately as a table of pointers to the relative

positions in memory where each Ai begins. In (132), each "_i is used to jump over each

coded _,i until the desired one is reached. 15 Any individual _,i can now be quickly

found and decoded without the need to decode any other _'i. Keep in mind that this

example illustrates an approach that speeds the determination of the location of a

variable-length string in a serial data stream. For the archive problem, the Ai could just

as easily be a one- or three-dimensional array. Additionally, exactly the same problem

results when communication errors threaten to disrupt the decoding process.

14This -_j has no relationship to the _j in Eq. 28.

15Note that in both cases, the -_i would typically be reduced to word, or byte, pointers

rather than bit pointers.
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ID CODING

Consider again the coding of a sequence of data blocks, this time from a more

general point of view. We'll get more specific later. As before, we take

X= ,X1 * X2 *... ,Xm (133)

as the sequence of m blocks to be coded. Each block is to be coded by an N-option

adaptive PSI11 coder, as defined in (21)-(24). We need not be too specific here.

The N code options for this PSI11 are given as

PSIoc0, PSIo_I,... PSI(zN_ 1

so that the form of a coded Xj is

Wl I[,Xj] = ID(idj) * _'OCidj[Xj]

where

(134)

(135)

is the code identifier for block ,Xj and

0 < idj < N-1 (136)

ID(idj)

is its standard [Iog2N j bit binary representation.

(137)

Now, define

i_l = id 1 * id2. ... id m (138)

as a block of all the identifiers and
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ID(i_l)= ID(idl)* ID(id2)*... ID(idm) (139)

as the corresponding sequence of standard binary representations.

Rearranging the Coding of

The basic form for coding all 2 is simply 16

_Fl1121]* _11122] * ... _1112m] (140)

or, expanding from (135),

ID(idl) * _FOqd1[21] * ID(id2) * _Oqd2122]* ... ID (idm) * _Oqdm[2m] (141)

But this can be rearranged without jeopardizing the decoding process, and without

any difference in performance as

ID(icl) * _idl [21]* _0_id2122]*" (142)

What have we gained? Thus far, we have only incurred an additional buffering
requirement. However, it should now be clear that ID(i_l) represents the fixed-length

coding of a sequence of symbols from a new data source - "the code identifiers." If the

entropy of this new source is less than a fixed-length representation requires, there

may be room for improvement. This suggests the coding structure shown in Fig. 26,

where we have used SPLIT' to indicate the operation of separating a coded block's

and PSl(zidj[2_].j We have named this structure PSI16 so that17idj

16From previous discussions, additional header information might be required (e.g.,

REF,O(,_), etc.), depending on the actual coding process.

17Again, note that, for the sake of simplicity, we have left out the possible additional

header information that may be required, such as REF, O(A), etc. In this case,
information could be required for both the original data 2 and the icl.
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Fig. 26. PSI16, Coding the Identifiers

_'16[_ = _a[id] * _e_id 1 ['_1] * • • • _'Cqd m[Xm] (143)

where PSla denotes the "to-be-determined" coder to be used to represent the m-

sample identifier sequence, i_l. In the basic representation of (140), PSla -ID[].

The Code Rate

Let

m

A = _E_,,_ (_Oqdj[Xj]) bits

j=l

(144)
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and

B = _ (PSla[icl]) bits (145)

Then, the average code rate for PSI16 is

E{_ (_1612])} = _ + bits/sample (146)=
Z (2) Z (2) Z (2)

Without loss of generality we can assume that for each block, both block size

and number of code options used for each block are the same and set to J and N,

respectively. Then we have

,,_ (2) = mJ = fixed (147)

Now, in considering what happens as N and J are varied, we will assume that

m (the number of blocks in X) is adjusted to maintain the length of ,X at a fixed value.

Contributions From (A). The statistical term (denominator fixed)

mJ (148)

is a function of N, J, and the characteristics of the data. Clearly, we can say that

1)

2)

Larger N means that there are more code options to choose from over a

given block size J. Thus, this term would tend to decrease with

increasing N. Of course, real improvements will only occur if the added

options are actually used (i.e., that they are chosen to be used because

they provide better performance than other options).

As J is decreased, the decision to use one of N code options is made

more often. The coder is thus able to respond more rapidly to changes in

data entropy and can thus code more efficiently. Since the penalty of

added code identifier bits is not included in E{A}, this term will tend to

decrease with decreasing J.
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We cannot be more precise in evaluating E{A} without getting considerably more

specific.

Code Identifiers. Now, consider the second term, which corresponds to the

contribution from code identifiers

E{B} (149)
mJ

If we assume a standard fixed-length binary representation, as in (140), we have

B = E{B} = m[Iog2N j bits

so that (147) is reduced to the nonstatistical

[Iog2NJ
O_F(N,J) - j bits/sample (1 50)

o_F is plotted in Fig. 27 for various N and J of interest. Because of a potential reduction

in the code-rate penalty implied by o_F, the structure in Fig. 26 was devised.

The total code rate in (146) becomes

+ O_F(N,J) (151 )

Note that o_F increases with N and decreases with J, just the opposite of the

"tendencies" exhibited by the first term in (146) and (151). To investigate this any

further we must be more specific.
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Application to PSI14,K+

Now, let the primary block coder in Fig. 26 be PSI14,K+.

Fixed-Length Identifiers. For most practical applications (e.g., imaging),

simulations will show that 9_F(N,J ) in Eq. 151 behaves something like the graph in

Fig. 28. That is, from an overall performance point of view, the choice of block size J is

not critical, provided that it is not too small and not too large. Since there is generally

an implementation advantage to smaller block sizes, most applications to date have

used a convenient J - 16 (power of 2) near the lower end of this range of "best"

performance. Thus, in many situations, variations in the two terms in Eq. 151 cancel

each other out.
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Coding the identifiers. Now, fix the PSI14,K+ structure in Fig. 26 and

consider situations where the coding of identifiers might be beneficial and for which

we can identify PSla.

For illustration, let

m=16
J = 16 (152)

(a realistic assumption). This means that each X in (131) is a sequence of 16 blocks of

16 samples each. Additionally, assume that the number of available code options is

9 _<N < 16 (153)

By Fig. 27 or Eq. 150, the penalty for a fixed-length code identifier representation is

0.25 bit/sample (or 4 bits per identifier). For our example, this is the most we can

expect to reduce the overall code rate by prescribing a different PSla.

The desired form for PSla in Eq. 143 and Fig. 26 becomes readily apparent by

drawing an analogy from the plots of entropy in Figs. 29 and 30.
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The figure shows a hypothetical, but not unrealistic, graph of average source entropy

plotted for a series of J = 16 sample blocks. The slowly varying entropy function is

shown for 1,000 such blocks in Fig. 29, and then Fig. 30 expands the region for blocks

400-500.

Note that these graphs look much like the waveforms generated by typical data

sources to which PSI14,K+ would generally apply. In fact, this is the key to specifying

an appropriate practical form for PSla.

Recall how PSI14K+ codes a block of sampled data. It compares the

performance of a set of individual code options (repeated here from (73) where,

without loss of generality we'll assume K = 0, since we're focusing on codes with many

options):

_i(k+id), k(X+id) (154)

for k > 0 and 0 _<id < N - 2 and

_3 for id = N - 1 (155)

(where X sets the starting option and id is the code identifier for a given option) and

chooses to use the best one, say with code identifieU 8

id = id+ (156)

It is now important to recall the performance characteristics for each option as

the identifier number is increased. Except for the first option and those with very large

id values, each individual option exhibits a Dynamic Range of efficient performance of

about 1 bit/sample. These 1-bit Dynamic Ranges are both adjacent and non-

overlapping [11]. Thus, the Dynamic Range for the option with id = -_ sits 1 bit below

the Dynamic Range of the option corresponding to id = .e + 1. This is shown more

18For example, with _. = 1 and N = 16 the codes in order of increasing id are PSI1,

PSI1,1, PSI1,2... PSI1,15, PSI3 for a 16-option coder, and corresponding to PSlss in

Ref [7].
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explicitly in Fig. 30 where, with X -- 1 in (154), the code identifiers for code options

PSI1 ,id+l are shown adjacent to their corresponding Dynamic Ranges.

Code option PSIl,id+l will be chosen most frequently when the source entropy

lies within its 1-bit Dynamic Range (id+1.5 < H(5 _<id+2.5). For example, in the graph of

Fig. 30, the identifier would tend to switch between id - 3 and id = 4 over blocks 400-

425. Then, id = 4 would predominate for the next 25 blocks as average entropy rises.

And so on.

Thus, we can interpret the generation of code identifiers as a "sampling" of the

entropy waveform with a quantization accuracy of 1 bit of entropy per quantization

interval (i.e., each code option). Hence, the data source represented by a sequence of

code identifiers behaves much like the data sources that PSi14,K+ itself was designed

to code efficiently. We should be able to follow a similar approach here.

z

In fact, for the example in (152) and (153) we should be able to use a properly

configured PSI 14,K+.

Recall that the "+" in "PSI14,K+" refers to those steps that precede the actual

coding of _)n sequences by adaptive variable-length coding. In general, those steps

could be arbitrary. In fact, the definition of a PSI14,K+ "module" presumes that pre-

processing can be external and, therefore, arbitrary. However, we can be more

specific for the identifier coding problem. The same kind of predictive preprocessing

considerations apply to the coding of identifiers as to more typical forms of data. For

now it suffices to note that the simple PSI14,K+ built-in one-dimensional predictor (or

external predictor) and mapper from Chapter II directly apply here. We will return to

this issue momentarily.

Then, assuming that a preprocessor has been specified, let 19

PSla = PSI14,0+

with parameters na, Ja, Xa, and Na given as

19Or the original PSI4 would also cover the required range of "id entropy."
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na = Number of input quantization bits = [Iog2N j = 4

Ja = Block length = m = 16

Xa = Starting Option Parameter for PSIO = 0

N a = Number of options = 4

Thus, the code options are from (154) to (155)

PSI0, PSI1, PSI1,1, and PSI3 (157)

That is, more simply,

PSla- PSI14+ with X = 0 (158)

The source of identifiers that we are now coding takes on values

id = 0, 1,2 ..... 14, 15 (159)

with the value of one sample distributed about the value of an adjacent sample (with

adjustments near the boundary values of 0 and N-l). We have seen this before. The

one-dimensional predictor in (14) and the specialized mapping of (18)-(19) directly

apply without modification.

The typical performance for the 4-option coder should adequately cover the t-4

bit entropy range, as shown in Fig. 16 (although the latter graph was obtained from

data with a much larger number of quantization levels). If much lower identifier

entropies can be anticipated, other algorithms could be applied (e.g., PSI9 in Ref. 3, or

run-length coding). For this example, the coder for PSI16 in Fig. 26 reduces to that

shown in Fig. 3t.
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As already noted, the difference in performance between this coder and that

provided by a standard PSI14,K+ representation is totally in the penalty imposed by

the identifier bits. For the fixed-length representation, this penalty is OcF(N,J) in Eq. 150

and Fig. 27, or 0.25 bit/sample with N > 8 and J = 16, as in this example.

Under the worst-case conditions, the PS114,0 coding of i_J in Fig. 31 doesn't

work at all, so that PSI3 is used on all identifier blocks. But PSt3 is equivarent to the

fixed-length representation. Thus, the total penalty for identifier representation is at

most _F(N,J) plus the penalty to specify which code option was used to represent the

identifier blocks themselves.

Assuming the 4-option PSI14,0 in Fig. 31, this penalty cannot be larger than 2

bits per X: sequence (from which a block of identifiers is extracted). This computes to

1/128 < 0.01 bit/sample.
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But note that actual conditions may be quite different from these worst-case

conditions. If the entropy is gradually changing, as in the hypothesized plots of Figs.

29 and 30, the identifier predictions would produce small errors so that code rates

between 1 and 2 bits/identifier might be a reasonable expectation. This would reduce

the identifier penalty (and hence the overall average code rate) to 0.0625 to 0.125

bit/sample. In the limiting case (all PSI0 occurrences - same code used for all primary

blocks), the identifier cost would drop to 0.03 bit/sample. Overall, this says that such

identifier coding might pick up as much as 0.2 bit/sample when stationary

conditions prevail, but would not lose anything significant when data

characteristics are rapidly changing.

These gains would double if a primary block size of J = 8 were used so that the

fixed identifier penalty for an N > 8 option PSI14,K+ is 0.5 bit/sample. Thus, identifier

coding might be most appropriate for situations in which the source is sometimes

rapidly changing (where smaller block sizes can be advantageous) and at other times

quite stationary.

How General? It should be clear that the primary and secondary coding steps

in Figs. 26 and 31 are independent of each other. That is, a primary PSI11 (or

PSI14,K+) coder that operates on an input Xj does not need to know about the later

coding of identifiers by PSla (or the reduced PSI14) and vice versa. Thus, for example,

identifier coding can be done external to a VLSI module that performs the primary

coding.

Because of this independence, one can look at the identifier coding problem as

more than a one-dimensional problem, as we did earlier for the primary data stream.

For example, the identifiers can be viewed as a two-dimensional array, just as in Figs.

2, 22 and 24, where two-dimensional predictors were considered. Certainly for

imaging applications, a prediction of the identifier (entropy) used when coding a

particular block could be positively influenced by knowledge of the identifier (entropy)

used by the block above it. In fact, the block above offers more pertinent prediction

information than an adjacent block along the same line (the block above is located in

the same spatial region).

Iterative PSI16. While not of practical value for the real data sources normally

encountered, it is worthwhile to note that PSla in Fig. 26 could be interpreted to be
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another PSI16 (with different parameters). By doing so, it means that the identifiers of

the coded primary identifiers would be coded also. And so on. A similar iterative

structure results from the binary coding algorithms in Ref. 3.

RATE CONTROL

Not all applications have the luxury of a data system that can absorb-the

naturally occurring variations in output rate from a noiseless coder. Often there is a

physical constraint that sets a fixed number of bits that can be used to represent blocks

of data. This may come in the form of memory restrictions and/or transfer-rate

limitations.

The case of primary interest t_ere is one in which the number of bits available to

represent data blocks is close to what is necessary to represent those blocks efficiently

(close to the entropy) by using noiseless coding. If the number of bits available is

close, but not sufficient, some loss in data fidelity must occur. But this loss should be

minor since almost enough bits are available (for a perfect reconstruction). The

resulting data reconstruction should be imperfect but "near-noiseless."

In this section, we will first look at typical rate or buffer restrictions placed on

imaging science applications. We will then introduce simple modifications tO the

coding process that should provide a practical measure of control on how this near-

noiseless error will occur. We later expand this approach to the "rate control" of the

multispectral HIRIS instrument.

The FIFO Buffer Constraint

The general rate-constraint problem we are addressing is ultimately one in

which a fixed, and presumably limited, number of bits can be used to represent a

certain span of data. Such a constraint can arise from many factors but often

materializes in the form of a buffer that cannot hold all the data generated for the span

of data. We will tie much of our future discussion to, and obtain motivation from, the

constraints imposed by the assumption of "First-In First-Out" (FIFO) buffers, as

described below.

86



32.
The concept of a FIFO Buffer as the vehicle for a rate constraint is shown in Fig.

DATA
SEOUEHCE

Y ,,"]PSZ?
"1

.0.F bi_s
Psz:[ ]< >I

>I FXFO BUFFER
, TRUHCRTEIF OOESH'T FIT

. RODDUHHY ZEROESIF DOESN'T FILL

Fig. 32. The FIFO Buffer

Here, a data sequence Y (which could be an image line, a single data block, a

complete image, etc.) is coded by a noiseless coder

PSI? (160)

which we have intentionally left arbitrary since the details of coding are immaterial at

this point. The coded result PSI?[_(] is passed into a FIFO Buffer of length .t F bits.

Then, the basic assumption is:

Exactly .eF bits will be communicated for (161)

This means that:

1) If ,_ (PSI?[_']) > t F, all bits of PSI?[Y] after the first ._F will be

truncated. (162)

2) If ,,_ (PSI?[_']) < ._F, dummy bits will be concatenated to the end of

PSI?[Y] to make the total length equal to t F. (1 63)

Standard Image Format. Recall the familiar standard format for the

encoding of images illustrated in Fig. 33. Lines are coded top-to-bottom and left-to-
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right. Recall that earlier notation - X(j) represents the jth line of a T-line image, with

samples running left-to-right.

< ,._(j)_____XC)_: L >
m i

X[1) >
X(2) >

I

XCj} "
I

I

X(T} >

PSI?IX(j)]

,,, I?

\

\ _'r = _L II< >
.-I_IFO BUFFERJ-_

'0__.F < 1+e

k7
LINE

BY LXNE

Fig. 33. Standard Format Line Coding and Buffering

Lines are coded one at a time, again by using arbitrary noiseless coder

PSI?

as in Fig. 32 and (160).

The coded result, PSI?[X(j)] for the jth line, is shown being placed in a FIFO

Buffer of length

F = ILL bits (164)

where

L= J_ (,X(j)) bits (165)

is the length of an uncoded line, and

(166)



Of course, the actual lengths of these coded lines will vary. If _ = 1 + _, the

buffer can hold any line produced, including an uncoded line (we assume that PSI?

incorporates a PSI3 option and that the _ is very small, but large enough to cover any

identifier overhead).

By assumption, in (161)-(163), the buffer length defines the rate constraint on a

"line." That is, the line must be communicated with precisely _L bits, regardless of the

number required or used by PSl?.2o

Lines that use less than this quantity must be supplemented with dummy

zeroes, as in

.eF = I_L BITS

PSI?[,X(j)] * 0 0 0... 0 0 0 (167)

CODED LINE DUMMY ZEROES

(SHORTER THAN BUFFER)

The penalty here is, of course, efficiency.

Longest Line. If I_ is decreased (shortening the buffer), eventually it will

decrease the buffer size to the length of the longest coded line.

Let

IJ-max (1 68)

be the value when this happens. Then, at this point, all lines can still be communicated

error-free. If _ F is smaller than iJ.max L, the ends of some lines must be truncated to

meet this constraint (see Fig. 32).

20Such a constraint could arise in many ways, but its effect is easiest to visualize with

this buffer.
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Average line. The average line length generated by PSI? for all lines in an

image is given as

1 Z,_ (PSI?[,X(j)]) bits (169)
A= T "

J

If PSI? incorporates PSI14,K+ we know that A would typically be close to a differential

entropy measurement times the number of samples in a line.

Suppose that instead of a single line buffer, we used a full-image FIFO buffer to

store all coded lines before communication. Then TA gives the minimum-length buffer

that would allow error-free coding (see 161-163). But if we apply this same rate

constraint over a single line, some lines will be truncated since, in general,

A < i_ma x L (170)

Thus, we immediately see the general advantage of larger buffers.

Visualizing Truncation. To visualize what happens, let the buffer size be the

average line length, A. Coded line lengths of a single image will tend to be distributed

about A, although the shape may not be as perfect as illustrated in Fig. 34. But this

depictiOn will sufficehere. Lines-that are longer than-_. Will be truncated by an amount

,,_ (PSI?[,X(j)]) - A bits (171)

and shorter lines will be increased by the addition of

A- Z (172)

-dummy zeroes as in (167).

The bit truncation that occurs will ultimately truncate samples at the ends of

lines, as shown in Fig. 35.
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Actual image examples of this phenomenon can be found in Ref. 5. Note that

because the characteristics of adjacent lines tend to be correlated, so too is the

magnitude of truncation that occurs from line to line.

Pr

Rdd / _. Truncate

.Jt 

Line Length, bits

= Rverase Line Length

[] Buffer Length = _.F

Fig. 34, Example: Line-Length Distributions for

Single Image, Buffer Length = Average Line Length

Perfec't.
Reconstruction

Truncated
Line Ends

Fig. 35. Truncated Image Lines
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Buffer Size and Error.The previous example was only intended to indicate

approximately how truncation errors might occur. In reality, depending on the

application, A and the distribution of line lengths about it are often not well known and

may vary significantly from image to image as different types of scenes are

encountered.

As an example, the HIRIS is a new experimental instrument with image-like

characteristics that has not actually been built yet [14]. Only estimates of instrument

source characteristics are available to guide the choice of buffer sizes and estimate

the impact of rate control. The instrument has 192 spectral bands, 12 bits/sample

quantization, with each band acting like a separate imaging system. Data derived from

similar instruments have shown that band-to-band entropies could vary by as much as

6 bits/sample, depending on the prediction method used. This could mean a lot of fill

bits for the lower entropy bands if a single fixed-line buffer length must apply to all

bands (in order to minimize the truncations of higher entropy bands). The HIRIS

instrument data problem is looked at more closely in a later section.

FIFO Buffer Priority. While adjustments to line-buffer sizes can affect the

amount of truncation that occurs (at the expense of efficiency), we have so far ignored

the possibility of altering the way truncation errors (e.g., Fig. 35) occur to a more

acceptable form.

Another way to look at the truncation error that occurs in Fig. 35 is to note the

following: Since damage occurs on the right side of the picture, the picture elements

(samples) on the left side have "more priority" for the limited bits allowed per line than

do the samples on the right side. When the bits run out, the samples with the least

priority are deleted.

Alternate Lines. Now, alternate this priority from right-to-left on odd lines to

left-to-right on even lines. By this we mean that alternate lines are coded and loaded

into the FIFO buffer in opposite directions. The result is shown in Fig. 36. ODD lines

are complete on the left side, and EVEN lines are complete on the right side. But

truncations occur on BOTH sides of the image.
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Fig. 36 Coding Alternate Lines in

Opposite Directions

The figure shows even and odd lines being coded in opposite directions. (The scale

does not allow all lines to be visible.) As shown, the region of line truncation on the

right side is the same as in Fig. 35, but every other line (the even) is now without error.

Similarly, the region of line truncation on the left side is (approximately) a mirror image

of the region on the right side, where now the odd lines are without error. A blowup of

the upper left-hand corner of Fig. 36 is shown in Fig. 37.
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Fig. 37. A Blowup of the Upper Left-Hand Corner of Fig. 36

Since alternate lines are without error (on either side of the image), the missing

pixels of truncated lines can be "filled in" by interpolation. The net result of this

approach is that the missing data in Fig. 34 are traded for a loss of resolution on both

edges of the image. This procedure was implemented for the Voyager 2 encounters of

Uranus and Neptune.

Note that this prioritizing does not prevent the use of two-dimensional prediction

discussed in an earlier section because when the coding of one line begins, the

reproducible length of the previous line is known. This defines those samples that can

be used to aid in prediction since a decoder will also be able to reconstruct them.

Prioritized LSBS. We will supplement the alternating left-right priorities

described above by adding new conditions involving the least-significant bits of each

sample in a line.

The concept we present here is quite simple, though the notation could easily

grow into unmanageable proportions. To minimize this possibility, we will use a more

specific limited example and extend earlier notation.
-,L
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To do this we modify and add to Fig. 19, as shown in Fig. 38. Here, as we have

been assuming, X(j) is now a complete line of n-bit data instead of a single block. The
~X

Split-Sample parameter ._ is set to .e = 2 so that L2 is a full line of the two least-
.,,.n,2

significant bits of each sample of X(j), and M x is a full line of the n-2 most-significant

bit samples of X(j).

~.n,2
For the coding of M x , we use a line coder of the form PSI15,K+, as described

in Eq. 110.

~X

Next, we perform another reversible operation on the 2-bit Isb samples of L 2.

First, note that even these two-bit samples exhibit significance. The operation SS2,1

from (51)-(54) strips off the least-significant bits of each two-bit sample and places

them in the sequence _'0 (note that these are also all the Isbs of X(j)). The remaining
~X

bits of each L 2 (which are the bits of next significance in samples of ,_(j)) are placed in

7,1.

The sequences PSI15,K+[IVIn'2], _,1, and _,2 are concatenated to produce the

coded line ,_(j) as

PSI?[,_(j)] = PSI15,K+[I_In'2] * A1 * '_0 (173)

By the arguments describing Fig. 19, we know that this coder will perform

almost identically to one that codes all the samples of ,_(j) directly as

PSI15,(K +2) +[,_ (j)]

_n,2
provided that the entropies of the M x sequences are high enough.

(174)
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Fig. 38. Arranging for Bit Priority

As described earlier, the initial "split" of the two lsbs off the input data shifts the

effective Dynamic Range for the coder used to represent l_Ix'2" upward by 2
~n,2

bits/sample. That is, if the lower end of the Dynamic Range for the M x coder is at 2.5

bits/sample, the lower end of the Dynamic Range for PSI? in Fig. 38 and Eq. 173 will

be at 4.5 bits/sample. Thus, if entropies lower than this shifted Dynamic Range are not

expected for an application, there is no performance penalty. This can be expected to

be the case for many new instruments which have upward of n =12 bit quantization.

The low-end entropies can be 5 or 6 bits/sample. And if we take K = 0 (and _. = 1) for

PSI15,K+ in (173), the lower end of efficient performance is at an entropy of only

H5 = 0.5 + 1 + 2 = 3.5 bits/sample

well below the minimum expected data entropies just noted.
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Now, consider what this "pre-splitting" does for rate control, assuming the same

FIFO Line Buffer constraints as depicted in Figs. 32 and 33. With the arrangement in

Fig. 38, the input to the FIFO Buffer of length _ F = I_L in Fig. 33 is the coded sequence

PSI?[,_(j)] in Eq. 173.

Figure 34 is expanded and modified in Fig. 39 to help see what happens as the

result of this new PSI? and the FIFO buffer limitations. The abscissa has now been

normalized to represent average bits/sample instead of total bits. Again we assume a

buffer length equal to the average coded line length, which has been normalized in

the figure to Jk'= Jk/(# samples per line = L/n) bits/sample. The source data are

presumed to be n-bit data so that the maximum normalized line length is n Pmax

bits/sample. For discussion purposes, the distribution of normalized line lengths

around the average is shown.

D.

n - qu_n*izo,÷io.

L : Uncoded Line |en9*h (Fi 9. 33)

L/n : no. saep[es/[ine

A : Aver49e Line Leng*h = Buffer Lens*h

K An-" _ = Normalized Average Line Len9*h
L

• m m

PERFECT
n-b,n*

quatn,y

%',,,

n-1 hi,

quati_y
(as Ro is

_runca,ed)

%

quo_it)p"

(os R, is
*runca,ed)
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Fig. 39. Example: Normalized Line-Length

Distribution for Bit Priority PSI? of Fig. 38
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As in earlier examples, if a normalized coded line length (bits/sample) is shorter

than the buffer length, A' here, there is no truncation.

As the normalized line length is increased past A', end bits of _'0 will be

deleted. That is, the least-significant bits of one end of such a line will be deleted,

allowing only n-1 bit reconstruction (keep in mind that this error represents only one

quantization level out of 4,096 for n = 12 bit data). All _.0 will be lost when normalized

line lengths reach A'+I bits/sample.

Similarly, the second Isbs of some or all samples will be lost for normalized line

lengths between A' + 1 and A' + 2 as sequence A1 is effected. With two Isb's gone,

only n-2 bit precision reconstruction can be accomplished.

~ n,2
As normalized line lengths exceed A' + 2, the coded sequence PSI15,K+[M x ]

in (173) will be affected, which causes truncation of samples at the ends of lines, as

before. Those samples not truncated can be reconstructed with n-2 bit precision. By

alternating the direction of coding, truncated samples can be filled in by interpolation,

as before.

What we have done in these examples is to identify several different parts of a

line's representation and order those parts by their relative importance. This ordering

turns into a relative "priority" for the coded bits when they are loaded (in their order of

importance) into a FIFO buffer. The priorities in this last example were:

(1) Samples have decreasing importance from one end of a line to the other.

(2) The priority direction in (1) above alternates from line to line.

(3) The next least-significant bits of all samples (_'1) are less important than

all the n-2 most-significant bits.

(4) The least-significant bits of all samples in a line (_'0) are less important

than all other bits.
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The advantages of this "more graceful" rate control are obtained at the cost of

the slightly greater implementation complexity required to reorder the coded data bits

before loading the FIFO.

Priority Variations. Certainly there are many variations to this prioritization

scheme. Among them:

A'0, A'I, etc., could apply only to the edges, which leaves the central

portion error-free.

The error that results from truncation can be reduced without a

performance penalty by rounding the most-significant bit samples that

are coded by using PSI15K,+. (For a single Isb truncation, add a

pseudorandom binary sequence during reconstruction. This will assure

that the average error is zero.)

Resolution can be more directly involved in the planned priorities. A line

(or portions of a line) could be rearranged before coding into sequences

of the even samples followed by the odd samples and vice versa, as

shown in Fig. 40.

Figure 40 assumes that every line is arranged into odd then even samples.

Once coded, the even samples will be deleted when the FIFO overflows. Assuming

alternating left-right/right-left coding, it is easy to see that

Provided that no more than 1/4 of a line's samples are truncated

(i.e., half the even), then (175)

All deleted samples (except on the image edge) will be completely

surrounded on all sides by samples which were not deleted,

allowing for an accurate interpolation reconstruction. (176)
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odd sampte

i th even sampte

By alternating the ordering of odd and even samples as in Fig. 41, condition

(175) above can be replaced by the condition

Provided that no more than 1/2 of a line's samples are truncated

(i.e., all the even or all the odd) (177)

Effects on Prediction. A slight penalty must be paid in prediction

performance. Assuming the simpler case in (175) and (176), prediction of even

samples is unaffected. But the prediction of odd samples cannot use an adjacent

(possibly missing) even sample. It must use the previous odd sample and/or the

corresponding odd sample in the line above.
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Fig. 41. Alternating the Ordering of Samples

by Odd/Even

A Multispectral Frame Buffer Definition

A multispectral scanner will ultimately produce many two-dimensional images,

one for each spectral band. A multispectral IMAGE is a collection of these 2-D images.

The HIRIS instrument currently being developed simultaneously produces one

line at a time for all of its 192 spectral bands. The collection of one line from each band

is called a FRAME. The collection of many FRAMES constitutes a multispectral IMAGE.

See Fig. 23 for further clarification.

Sample Data. HIRIS could generate an extraordinary range of data entropies

when comparisons are made over all of its spectral bands. Ultimately the actual

variability will depend on the level of uncorrected sensor noise and/or the method of

prediction used. Here we will focus on a worst-case entropy variability situation.

Figure 42 was derived from a sample multispectral image taken with an earlier

224-band instrument called AVIRIS [15]. The flat-field corrected image used a

quantization of 10 bits/sample in each band. The figure shows a plot of observed
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entropies for each band obtained from the use of the 2-D predictor described in (112).

The entropy of the average prediction error distribution (over all bands) was

H5 = 4.9 bits/sample (178)

Performance using an appropriate PSI14,K+ followed this graph closely, which

yielded an average performance for the complete image of

A' = 4.6 bits/sample (179)

H(_ : En_roW o_ Average 2-0

Predlc_ion Error Dis_rlbu_ion : 4.S bi_s/sample
r

4,8

t 220

Spectra! Band Humber

Fig. 42. HIRlS Entropy Variability-AVIRIS Image

Both R_ and A' in (178) and (179) are about 0.3 bit/sample lower than would be

achieved by a 1-D Cross-track predictor.

The Buffering Problem. The graph in Fig, 42 represents an average over the

many FRAMES that make up the sample image. FRAME to FRAME fluctuations of this

graph would reflect the relatively smaller line-to-line activity variations within one

spectral band.
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Here we are interested in constraining rate over a single FRAME. For

discussion purposes we will assume that the graphs for A' and A 5 in Fig. 42 are

representative of a particular FRAME.

The general impact caused by requiring individual FIFO line buffer rate control

for each spectral band in a FRAME - all fixed to a single line length - should be

evident from Fig. 42. Clearly, with a normalized line length equal to the average

performance A', there would not only be a lot of truncation (higher activity bands) but

also a lot of filler bits (lower activity bands). Of course, the line buffer length might be

larger than A', at least reducing the truncation problem. But we won't count on that

here.

The priority approaches just discussed are applicable here. In fact, individual

bands could be assigned different buffer lengths to customize the effect of truncations

caused by the FIFO buffers being too small. But truncations and other errors would still

occur that could be avoided with a larger buffer.

As in earlier discussions, a FRAME Buffer of length

A'x (# samples per FRAME) bits (180)

could hold a complete coded FRAME without error - clearly a significant improvement

over many line buffers of the same total length.

Remember, any buffer we talk about is really a convenient way of expressing a

bit count constraint placed on a block of data or an interval of time. The buffer itself

may not need to be physically present. For example, the concept of a FRAME Buffer

may really mean that a data link allows the transfer of a certain number of bits over the

time interval needed to generate a FRAME ("Frame Time"). As long as all data can be

retrieved directly from the instrument, coded and transferred immediately with the

allowed number of bits, no FRAME Buffer would be necessary.

A convenient way of achieving this is to constrain the number of bits to be fixed

for each spectral line - with the consequences noted above. We will look for another

way.
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Note that the key advantage of a FRAME Buffer is that variable-length lines are

allowed. The sum of those lengths must fit in the buffer.

If a FIFO FRAME Buffer were really available, a number of FRAME oriented

priorities would be applicabl e . For example, reordering th e spectral bands by priority

would result in deletion of the least-important bands if the buffer weren't big enough.

But this all-or-nothing approach might not be appropriate either. Instead let's consider

a way to distribute any truncation and/or error losses more evenly over a FRAME.

Now we again need some additional notation. Let X(j) denote a line from

spectral band j, with uncoded length ,,_ (,X(j)) = L, where j = 1, 2, . . . T. Here we have

used the same notation as in Fig. 33, except that now each line is derived from a

different spectral band. 21

Let

Lj = Coded Length of (a complete) ,X(j) (18i)

Then the average coded line length is

A=A,L 1 T
n=_ _Lj bits/line (182) _-

j=l _ _ : _ _

where A' is the same term as in Fig. 42, and TA is the minimum-sized FRAME Buffer

that could hold all of the coded X(j).

Let

ej- _9_- TA = fraction of total bits generated by X(j) ...... (1 83)

B = Actual Frame Buffer Length, in bits (184)

21Note that T might be variable since some operational modes may delete some of

the spectral bands from consideration.
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and let

B

TA

I Fractional Comparisonof Actual Frame Buffer

size with the minimum size

that can hold all codedspectral bands

(185)

Now we can allocate the total number of bits available, B, to T FIFO line buffers

according to the priority given in the {ej}. The buffer sizes are

Bj = 0jB bits (186)

Data for each coded individual spectral band will now be controlled by their individual

FIFO buffers, instead of a FRAME Buffer.

And clearly, since Zej = 1,

T

_B i = B bits

j=l

(187)

By substituting from (181), we have

Bj = 0jB = Lj (TA),) = y Lj bits
TA

(188)

So the LINE Buffer size Bj is a fraction of the size needed to hold all of a coded ,_(j).

When 7 = 1

Bj = Lj and B = TA bits (189)

By this process, we have established a set of variable-length FIFO line buffers whose

individual lengths reflect their relative need for bits, based on the length of coded data

(an "entropy" criterion).

105



When T >-1, there is no loss. If T is decreased below unity, each spectral band

w;il begin to experience some truncation (and/or error) since each FIFO line buffer is
no longer big enough to hold a complete coded line.

Thus, we have distributed the effect of FIFO buffer truncation over all the bands

rather than only the very active. Of course, the priority scheme used for each spectral

band could still be customized.

Note that if the variable buffer sizes could be set up a priori, the existence of

real physical LINE Buffers would not be needed. Each spectral line, ,X(j), would be

coded on-the-fly with ejB bits. This is not unreasonable, since an entropy graph such

as Fig. 42 is representative, even if it does vary.

But since the Lj for each spectral band can be expected to be highly correlated

from FRAME to FRAME, the assignment of FIFO LINE Buffer lengths Bj could be made

adaptive by using an Lj calculated from the previous FRAME for each spectral band.

Adding Other Priorities. The {ej} are priorities based on a criterion of

entropy. Other criteria can also be integrated into the determination of FIFO LINE

Buffer lengths, as we shall illustrate.

Let

j3j, j = 1,2 .... T (190)

be a set of spectral band priorities based on some other criteria - perhaps "scientific

importance to the current investigation." Then we must have

T

0 _<_j < 1 and __._j = 1 (191)
j=!

To weight the two criteria, we choose 0 < a _<1 for the {ej} set and (l-a) for the {13j}set.
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We can now modify the FIFO LINE Buffer assignments in (186) to

!

gj = [aOj + (1 - a) 13j]Bj bits

for spectral band j.

(192)

The addition of such priorities can cause the assignment of bits in (192) to

exceed the amount needed to achieve noiseless coding (Lj in Eq. 181). But this can

be accounted for by iterating the assignment of bits to redistribute the extra bits to

other lines.
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APPENDIX A

MORE ON THE MAPPING

OF PREDICTION ERRORS

The function that maps prediction errors while placing priority on negative

values over positive is transferred from Eq. 18 for convenience.

2_i
"-+(xi, _i) = 8i = 21Ail - 1

e + IAil

0<Ai<e

--0 <_i < 0

Otherwise

(A-l)

and e is defined in Eq. 19.

When the positions of positive and negative differences in (1 6) are reversed,

this mapping becomes

I 2A i- 1
"J_ +-(xi, _i)= -2tH

e + IAil

0<Ai<e

-e < &i _ 0

Otherwise

(A-2)

A A

If _( and X are data and predict_n sequences, then,../_-+(_(,X) means the

application of (A-1) to each sample of X, ,X; and similarly for ,J_+-(.,-).

In most situations, the two mappings are statistically equivalent. However,

certain kinds of images exhibiting many long brightness ramps might benefit from one

or the other, or both (an adaptive preprocessor).

Relationship between ,J_ +- and,J'/_ +

Define the Ones Complement of a sequence of one or more n-bit data samples

=YiY2Y3... by

ON-'=T(_') = 2 n - 1 - Yl, 2n - 1 - Y2, 2n - 1 - Y3 .... (A-3)

^

Then, with xi and x i as individual n-bit samples and their predictions
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^

-+(xi, xi) =J/L'+-(ONE(xi), O-N"E(_i)) (A-4)

and

A

+-(xi,x'i)='-////'-+(ONE(xi),ONE (_(i)) (A-5)

^

But more important, by extending this to data,and prediction sequences ,X and X, we

have

^ ^

,.A//--+(x,R)=,JY_'+-(ONE (,X),ON_(,X)) (A-6)

and

^ ^

,J_L'+-(>C,X)= ,..//_'-+(ONE (X),ONE (X)) (A-7)

Test Vectors

Equations (A-6) and (A-7) tell us that a data sequence (and prediction) that

produces a known sequence of 6's by one mapping can easily be converted to an

alternate data sequence (and prediction) that will generate the same sequence

of 8's by using the alternate mapping. It is, of course, the 6's to which adaptive

variable length coding is applied (Fig. 4). The two complementary data sequences

might be test vectors for this coder.

Decoding

A

and X can be retrieved by applying the inverse mapping operations of Eqs.

(A-l), (A-2), (A-4)-(A-7) and any a priori information, and Eq. (115) so that

A A

(X,R)--inv,j_['-+{_A/['-+(X,X)} (A-8)

and

^ ^

(,X,X) = inv J//+- {,j_"P-(x,,x)} (A-9)
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But suppose we apply the +- inverse map to the result of applying the -+ map:

A A

(X',R')- inv,j_L+- {,,y_{'-+(R,R)} (A-IO)

We don't get the original sequence back, but we know that by (A-7)

A A

+'-()_',R'))=,_/_'-+(o-'N"_C_'),-O'N-'_'(,R'))

so we must have

^ ^

(_,R)= (_()_'),-O-'_"_'(,R'))

Ultimately, all this means that a "decoder" using the ,._/L-+(

used to decode data that had been generated using the J/L'+-(

versa.2 2

(A-11)

(A-12)

) map could be

) map, and vice

22Note that any Reference Sample

complemented before decoding begins.
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APPENDIX B

MORE ON THE PSII,k

SPLIT-SAMPLE OPTIONS

Following the same notation as in Chapter III, Split-Sample Code "Option"

PSI1 ,k is defined in (58) and Fig. 12 by

_'l,k[ _n] = _l[l_In'k] * Lk (B-I)

where _n is a J-sample block of n-bit samples, l_ln,k are all the most-significant n-k bit

samples of _n, and Lk are all the least-significant k-bit samples of _n.

PSI1 ,k constitutes one of several coding algorithms that are used with adaptive

coder PSI14 or PSI14,K and others. Since decisions that determine which code option

to be used are made over a complete J-sample data block, it is natural to arrange the

individual pieces of the coded blocks PSIl[l_ln,k] and _-k as in (A-l). There are subtle

advantages of certain approaches to implementations and a performance advantage

under certain rate-controlled situations, as discussed in Chapter IV. Consequently we

have maintained the definition in (A-l) throughout. However, here we'll take a closer

look at this definition.

PUTTING THE PIECES BACK TOGETHER

We need to expand our notation slightly. Let

_n = 51 52... 5j

be the sequence of n-bit samples to be coded, and let

IVln, k = m 1 m 2 . .. mj

denote the sequence of n-k bit samples of _n, and

(B-2)

(B-3)

Lk = Isbl * Isb2 *...* Isbj (8-4)
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denote the corresponding sequence of all the k-bit least-significant bit samples.

Then, by (27), (29) and (A-l), we have the expansion

_1 ,k[_n] = fs[ml] * fs[m2] * ... fs[mj] * Isb 1 * Isb2* ... Isbj (B-5)

we could instead rearrange (A-5) to

_'1 ,k[ _n] = fs[ml] * Isbl * fs[m2] * Isb2*

or

* fs[mj] * Isbj

_'1 ,k[ _n] = Isbl * fs[ml] * Isb2* fs[m2] * .--Isbj * fs[mj] (B-6)

With this arrangement it is more obvious that the coding of any individual sample for

_n, say _i, is the application of the variable-length code, say Cn,k[. ], where

Cn,k[Si] = Isb i * fs[mi]

We have merely collected the individual coded pieces of each sample in (A-5).

(B-7)

Optimality of the Code, Cn,k[ ]

Yeh [11] has shown that the set of simple codes in (B-7) is equivalent to a class

of Huffman codes under the Humblet condition. 23 This is a powerful result because it

explains more directly why the measured performance of each PSI1 ,k code option is

so good - that over a limited entropy range, there is none better.

Multiplexing

Now, subscript or superscript the n, _n, 6i, mi, Isbi, and k in the descriptions

above by a, b and c to denote that each block (and its coding) is derived from different

data sources.

23Assuming the "optimized fs code."
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6)
Clearly, we could mix the coded blocks from the three data sources as, from (B-

_'l,ka [(_:a] * _"l,kb [(_bb] * _'l,kc ['c c] (B-8)

But we could also go further than this and multiplex the individual codeword pieces

from (B-7) for any na, n b, n c, ka, kb, kc as

,s ,sIraqi).
(B-9)

without incurring any decoding difficulty, provided that the n a, nb, nc, and ka, kb, kc,

quantities are known by a decoder. But presumably these quantities will only change

because of the internal decisions of the three separate adaptive coders employing

PSII,k code options. 24 In that case, three corresponding code identifiers would

precede (B-9) to reveal any changes.

24For example, three separate PSI14 coders, all with starting option PSI1,0 (i.e., X =

1).

113



APPENDIX C

COMPARING PSI0,1 WITH PSI1,0

By definition,

,_ (_rO,l[_n])= ,_ (_ro[l_ln,1]) + J bits (C-1)

where I_1n,1 is the sequence of the most-significant n-1 bit samples of _n. We wish to

compare this with

F0 = ,,_ (_l[_n]) = ,,_ (_l[IVIn,0]) bits (C-2)

By Eq. 80,

F 1 = ,,_ (_l[IVIn,1])bits

is the length of the Fundamental Sequence for I_1n,1. By Ref. 5

1
F 1 >__(F 0 + J - Y_,(Isbs of _n))

which gives us Eq. 81 for k = 1, if the split least-significant bits are random.

(C-3)

(C-4)

But from (41)

Then, by' using (C-1), we get

+ 2(F1-J)

or

•,_ (_0,1[_n]) < L-_-] + 2F1- J

(c-5)

3,_ OFO,l[_n]) _<7F 1 - 3J

By substituting (C-4)
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6,,_(_0,1[_n]) _<7(F0 + j _ T.,Isbs) - 6J = 7F 0 + J - 7T_,Isbs

if we ignore the integer requirement, then

1
(_0,118n]) <-Y 0,1 = _ [7F0 + J - 7T_,Isbs] (C-6)

The minimum and maximum values of any Y0,1 occur when all the split lsbs are

ones or zeroes, respectively, giving us

7
min "Y0,1= 6 F0 - J (C-7)

7 J
max 'Y0,1 = _ F0 + _ (C-8)

When the Isbs are distributed randomly, Y0,1 would lie between these limits, as

7 5
E{Y0,1 I random Isbs} =_ F0 --_-J (C-9)

These results are plotted in Fig. C-1.

The figure plots Y0,1 from (C-7)-(C-9) as a function of F0. It also shows F0

plotted against itself since this is what we wish to compare.

Remember, we are really interested in the average properties of Y0,1 in (C-6),

that is, E{Y0,1}. The Y0,1 plots in Fig. C-1 are contingent on specific distributions of the

split least-significant bits - all ones, all zeroes, or random.

Not until entropies start exceeding about 3 bits/sample (corresponding to F0 >

3J) can the distribution of Isbs be considered random. Then E{Y0,1} and the

performance of PSI0,1 will follow the center curve for Y0,1 (Eq. C-9). But by then, this

curve lies above F0, having crossed at F0 = 5J/2.

115



gl
4.,
ii

J_

q

U
¢
cl
Ii
L,
0

L
¢

a.

4J

3J
T-E +max _'0,! : G 0 J/G

Isb's oil zero

I

P'\J o,
t f Lsb's random0 J
J 2J

ACTUAL

• .L.

/ . Isb's random
t t

i s

f f

" 2,1

I

•'°Zo,l=IFo" - J
Isb's all ones

3J

Fo in bi_s

Fig. C-1. Y0,1 Performance Bounds

Although there are sequences that can be coded better with PSI0,1 than PSI1,

on the average, PSI1 will do better. Furthermore, as F 0 > 5J/2, PSI14 will be choosing

the next Split-Sample mode PSI1,1 which will outperform PSI1 itself.

As entropies are lowered, the Isbs will tend toward more and more zeroes until

at R 8 = 0 all the Isbs MUST BE ZERO. There is only one possibility for Y0,1 as shown

by point (A) in Fig. C-1. Here ")'0,1 corresponds to max 70,1 in Eq. C-8. Clearly, the real

E{Y0,1} will gradually move away from point (A) and merge with the graph for random

Isbs. Until this happens, the average performance of PSI1 should be better than

PSI0,1.

But we have already considered the higher entropies. Thus, it would appear

that for all practical purposes, the average performance of PSI1 should always be

better than that of PSI0,1.
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APPENDIX D

GAIN/OFFSET SENSOR NOISE

GAUSSIAN ENTROPY FUNCTION

The density function for a Gaussian random variable _ is given by the familiar

1 e_(__m)2/2c2 (0-1)
f(_) - cq2:c

where

m =mean value (D-2)

and

c = Standard Deviation (D-3)

It can be shown that a good approximation to the entropy of a quantized 4, for (_

> 1, is given by the Gaussian entropy function [16]

In(c 2 + 1--_)

HG(C) =2 I°g2 [2:ce(a2 + )] = 2.047 + 2 In2 (D-4)

The inverse of D-4 is given as

c = (e [(HG(_)-2"047)/1 ,386]
1

12

PREDICTION ENTROPY

let

(D-5)

Let F' = {pj} denote an observed distribution of prediction error differences, and

c(F )) (D-6)
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be its calculated standard deviation in data numbers (DN). A direct calculation of the
entropy of P is then from Eq. (10)

H(P) =-_" pj log 2 pj bits/sample
J

From numerous simulations involving various data

observed that for a broad range of differential entropies,

(D-7)

sources [1 2], it was

H(P) = HG (a(P)) (D-8)

Discrepancies of less than 0.1 bit/sample in the two sides of (D-7) were typical. Thus,

the Gaussian model can be assumed to be reasonably accurate in estimating

differential entropies for real quantized data sources.

Introducing Noise

The sample-to-sample sensor noise effects caused by variations in gain

sensitivity and offset for some modern instruments can also be well modeled as

Gaussian, and independent of the real signal. 25 We can use these results to obtain a

reasonable measure of the expected effect of this gain/offset noise on code rate. It is of

particular interest to investigate this impact because this form of noise is potentially

correctable within the instrument data system [17].

Figure D-1 shows the Preprocessor portion of module PSI14,K+ with an input

that includes this sensor noise.

Here, s i is the real ith signal value and xi is the corresponding value seen by

the Preprocessor AFTER a Gaussian noise signal, n i, is added to it. The ith difference

signal, A i, becomes

25For our purposes here, the real signal may actually already include other non-

correctable noise effects, such as shot noise.
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Fig. D-1. Signal Plus Noise

A' i = x i - xi_ 1

=s i+n i-(si_ 1 +ni- 1)

= (s i - Si_l) + (n i - ni_l)

= &i + n'i (D-9)

where A i is the difference signal if noise were not present, and n' i is a new zero mean

Gaussian random variable with Standard Deviation o' n. This suggests the statistically

equivalent diagram in Fig. D-2 where we now make use of (D-7) to assume that A i is a

zero mean Gaussian random variable with standard deviation Os.

119



P$I14,K+-

(5_andard} Preprocessor
n i

Gaussian

e,

+

DELRY>9"

t

>Q ,,
/

/
/

6oussian

"5 + n

1 i ! 1 Q 1

Fig. D-2. Difference Signal Plus Noise

/

8,
b,

Here the error signal that eventually gets coded is more clearly the sum of the two

independent zero mean Gaussian signals A i and n' i. Then summarizing, we have

o' n = Standard Deviation for Gaussian Noise Signal

_S

(_s+n

= Standard Deviation for (Gaussian)

Signal Predictor Error

= Standard Deviation Gaussian Signal

= _s + °"n

(D-10)

We can now investigate coding efficiency with and without noise by evaluating

the impact on Gaussian entropy HG(_s+ n) = HG(G s + O'n) for various levels of noise,

as specified by O'n or HG(dn).

We will not exhaustively study these effects here since we are not dealing with

any specific instrument. It will suffice to get a feel for the effects. Plots of HG(_ s + o' n)

vs HG(Os) for various levels of HG(O'n) are shown in Fig. D-3. Some similar curves first

appeared in Ref. 1.
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DISCUSSION

The curve to use for comparison in Fig. D-3 is the 45 ° line that represents signal

entropy alone (i.e., HG(_s) vs HG(_s) ).

As noise is increased above zero, the overall entropy, HG(_ s + C'n) , increases

at all signal entropy values. But the net increase caused by the noise diminishes

dramatically as the underlying signal entropy increases. For example, when the signal

entropy is HG(_s) = 0, the impact of a noise signal with 4 bits/sample of entropy

(HG(_'n) = 4) is clearly to increase HG(_ s + C'n) from zero to 4. But if the actual signal

entropy is HG(_s) = 6 bits/sample, the impact of a HG(_'n) = 4 bits/sample noise signal

is to raise the overall entropy HG(_ s + (_'n) by a comparatively insignificant 0.3

bit/sample.
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AVIRIS Image

Consider again the plot of prediction entropy for a flat-field corrected 224-

spectral-band AVIRIS image in Fig. 42. This is essentially a plot of "signal entropy"

over all the individual bands. The entropy of a measured average prediction error

distribution was 4.9 bits/sample. At such a high value, the impact of gain/offset noise

with entropies of as much as 4 bits/samp!e would, by Fig. g-3, be generally less than

about 0.5 bit/sample. But in reality, the impact would be higher.

Many of the spectral bands exhibit signal entropies much lower than 4.9

bits/sample. For example, at a signal entropy of HG(as) = 3 bits/sample, a noise with

HG(a'n) = 4 bits/sample would increase the overall entropy, HG(a s + a'n), by about 1.6

bits/sample. Clearly, this represents a significant reduction in coding efficiency for the

spectral band that has a 3 bits/sample signal entropy.

Equalizing entropies. Note that the addition of significant levels of noise to

all AVIRIS bands will tend to equalize the individual entropies. Suppose that without

noise, entropies varied from 1 to 6 bits/sample, a spread of 5 bits/sample. With the

addition of noise with, say, HG(a'n) = 5 bits/sample, the overall entropies would vary

over the range 5.1 _<HG(a s + a'n) _<6.6 bits/sample, a spread of only 1.5 bits/sample.
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